

Exegol: professional hacking setup

 [image: exegol logo]

 [image: pip package version]

 Install Exegol

Install Exegol

Installing Exegol starts with installing the entrypoint to the whole project: the Python wrapper. Once the wrapper is installed, everything else can be managed from it.

Hint

It is strongly advised to install Exegol on a Linux host, especially when planning on using Exegol for internal penetration tests. This is because Docker Desktop on Windows and macOS lacks a few features, mainly due to how these operating systems run Docker containers within an internal VM that doesn’t share the host’s network interfaces and USB accessories.

Once the wrapper is installed, the second step in setting up Exegol on a device is to install at least one Exegol image, either with exegol start (documentation
here), or with exegol install (documentation
here). Both actions will guide the user in installing an image if needed.

	Requirements

	Installation

	1. Installation of exegol

	2. Adding Exegol to the PATH

	3. Run Exegol with appropriate privileges

	4. Installation of the first Exegol image

	5. (Optional) Using Exegol auto-completion

Requirements

The following elements are required before Exegol can be installed, whatever the host’s operating system is:

	git (Linux [https://github.com/git-guides/install-git#install-git-on-linux] | macOS [https://github.com/git-guides/install-git#install-git-on-mac] | Windows [https://github.com/git-guides/install-git#install-git-on-windows])

	python3 (Linux [https://docs.python.org/3/using/unix.html#on-linux] | macOS [https://www.python.org/downloads/macos/] | Windows [https://www.python.org/downloads/windows/])

	docker (Linux [https://docs.docker.com/engine/install/debian/]) or Docker Desktop (macOS [https://docs.docker.com/desktop/install/mac-install/] | Windows [https://docs.docker.com/desktop/install/windows-install/])

	at least 100GB of free storage recommended (a minimum of 20GB could be enough, but only for the light image).

Additional dependencies may be required depending on the host OS.

LinuxmacOSWindows
No additional dependencies for Linux environments.

Tip

From Linux systems, Docker can be installed quickly and easily with the following command-line:

curl -fsSL "https://get.docker.com/" | sh

Warning

By default, sudo will be required when running docker, hence needed as well for Exegol. For security reasons, it should stay that way, but it’s possible to change that. In order to run exegol from the user environment without sudo, the user must have the appropriate rights. You can use the following command to grant them to the current user:

add the sudo group to the user
sudo usermod -aG docker $(id -u -n)

"reload" the user groups with the newly added docker group
newgrp docker

For more information, official Docker documentation shows how to manage docker as a non root user [https://docs.docker.com/engine/install/linux-postinstall/#manage-docker-as-a-non-root-userm].

Warning

Docker “Rootless mode” [https://docs.docker.com/engine/security/rootless/] is not supported by Exegol as of yet. Please follow the install procedure mentionned above.

To support graphical applications (display sharing functionality, e.g. Bloodhound, Wireshark, Burp, etc.), additional dependencies and configuration are required:

Hint

The XQuartz requirement below is now optional if using the (beta) Graphical Remote Desktop feature instead of X11 sharing (join our Discord to know more about this beta feature).

	XQuartz [https://www.xquartz.org/] must be installed

	The XQuartz config Allow connections from network clients must be set to true

	Docker Desktop must be configured with default File Sharing (see screenshot below)

[image: macOS XQuartz configuration requirement]

macOS XQuartz configuration requirement

[image: macOS Docker Desktop resources requirement]

macOS Docker Desktop resources requirement

Warning

You’ll also need to add the exegol source folder (or, more precisely, the folder [...]/exegol/utils/imgsync).

If you install Exegol from the python pip package, this folder is located where the python packages are installed.
The path to this folder depends on how you installed python. When creating your first container, you may get an error disclosing the exegol installation folder, which will have to be added as an authorized resource.

Tip

OrbStack [https://orbstack.dev/] for Mac is supported by Exegol wrapper from v4.2.0.

Your exegol installation cannot be stored under /opt directory when using OrbStack (due to OrbStack limitations [https://github.com/orbstack/orbstack/issues/435]).

This support is still in beta, feel free to open issues on GitHub [https://github.com/ThePorgs/Exegol/issues/new/choose] if you encounter any bugs.

To support graphical applications (display sharing functionality, e.g. Bloodhound, Wireshark, Burp, etc.), additional dependencies and configuration are required:

	Windows 10 (up to date), or Windows 11, is required

	Docker Desktop installed on the Windows host

	Docker Desktop must be configured to run on WSL2 engine (how to [https://learn.microsoft.com/en-us/windows/wsl/install])

	WSLg [https://github.com/microsoft/wslg#installing-wslg] must be installed to support graphical application

	at least one WSL distribution must be installed as well (e.g. Debian), with Docker integration enabled (see screenshot below)

[image: Windows Docker Desktop WSL integration configuration]

Windows Docker Desktop WSL integration configuration

In a Windows environment, the Exegol wrapper can be installed either in a WSL shell or directly in your Windows environment with Powershell.

Warning

Please note that it is not advisable to use Exegol from both environments at the same time, as this could lead to conflicts and Exegol does not officially support this configuration.

Warning

You may want to disable Windows Defender during the installation, as Exegol will download pre-built remote shells (or temporarily exclude C:\Users\<username>\AppData\Local\Temp or the source file directory).

You should also add the folder C:\Users\<user>\.exegol\exegol-resources to the exclusion list.

Installation

The installation of Exegol on Linux, macOS and Windows are very similar. It can either be installed from pip (easiest, most user-friendly, but with a few missing features) or from sources (easy as well, fully featured).

1. Installation of exegol

Installing with pipx (preferred)Installing from sourcesInstalling with pip
The pre-compiled Exegol’s wrapper can be installed from the PyPI repository.
While this is the easiest and most user-friendly technique, it is advised to install from sources, as it allows to switch from release to dev branches easily and it supports the auto-update feature.

Using pipx allows you to install Exegol in an isolated virtual environment dedicated to it.

First, pipx must be installed on your host system:

install pipx if not already installed, from system package:
sudo apt update && sudo apt install pipx
OR from pip
python3 -m pip install pipx

Exegol’s wrapper can be installed with pipx either from sources or pre-compiled from PyPI:

You can now install Exegol package from PyPI
pipx install exegol

Or from sources directly
pipx install git+https://github.com/ThePorgs/Exegol

Exegol’s wrapper can be installed from sources (with Git). The wrapper then knows how to self-update, and switching from release and development branches is possible and very easy.

git clone "https://github.com/ThePorgs/Exegol"

Tip

If you want a light clone of Exegol (and never use the dev branch), you can use the following command:

git clone --shallow-since="2023/05/08" "https://github.com/ThePorgs/Exegol"

If you have access to docker directly as a user, you can install the requirements only for your current user
otherwise the requirements must be installed as root to run Exegol with sudo.

With sudoDirectly as user
sudo python3 -m pip install --requirement "Exegol/requirements.txt"

python3 -m pip install --user --requirement "Exegol/requirements.txt"

The pre-compiled Exegol’s wrapper can be installed from the PyPI repository.
While this is the easiest and most user-friendly technique, it is advised to install from sources, as it allows to switch from release to dev branches easily and it supports the auto-update feature.

python3 -m pip install exegol

Warning

In some cases, it is no longer possible to add a pip package system-wide (PEP 668). In such cases, it is preferable to use pipx.

2. Adding Exegol to the PATH

Installing with pipx (preferred)Installing from sourcesInstalling with pip
In order to use pipx applications, the pipx environment must be set in your PATH:

pipx ensurepath

Dont forget to open a new terminal to reload your PATH before continuing.

Linux & MacOSWindows
Once this is taken care of, the exegol wrapper can then be added to the PATH with a symlink for direct access. This allows to call exegol from wherever, instead of to use the absolute path. Exegol can then be used with exegol <action> instead of python3 /path/to/Exegol/exegol.py <action>.

sudo ln -s "$(pwd)/Exegol/exegol.py" "/usr/local/bin/exegol"

Once this is taken care of, the exegol wrapper can then can be added as a PowerShell command alias. Exegol can then be used with exegol <action> instead of python3 /path/to/Exegol/exegol.py <action>.

To create the alias file correctly, open a PowerShell and place yourself in the folder where exegol is located (applicable only for from source installations) and run the following commands:

Create $PROFILE file if it doesn’t exist:

if (!(Test-Path -Path $PROFILE)) {
 New-Item -ItemType File -Path $PROFILE -Force
}

Create alias for Exegol in $PROFILE:

echo "Set-Alias -Name exegol -Value '$(pwd)\exegol.py'" >> $PROFILE

Warning

To automatically load aliases from the .ps1 file, PowerShell’s Get-ExecutionPolicy must be set to RemoteSigned.

If the configuration is not correct it can be configured as administrator with the following command:

Set-ExecutionPolicy -ExecutionPolicy RemoteSigned

Tip

If you have installed Python3 manually and Windows opens the Microsoft store on the python page as soon as you type python3.exe, try this:

It is possible to disable this behavior in the Windows settings: Apps > Apps & features > App execution aliases and disable aliases for python.exe and python3.exe.

If your pip installation is correct and functional, you have nothing more to do and you can already use the command exegol.

If not, remember that pip installs binaries in a dedicated local folder, which then must be in the PATH environment variable.
Try to fix your pip installation: Linux [https://stackoverflow.com/a/62823029] | MacOS [https://stackoverflow.com/a/43368894] | Windows [https://builtin.com/software-engineering-perspectives/pip-command-not-found]

3. Run Exegol with appropriate privileges

LinuxmacOSWindows
Exegol does not support rootless docker. To interact with docker, you must either have your user be a member of the docker group to use exegol as a user, or run Exegol with root privileges using sudo.

Run as root (preferred)Run as user
To run Exegol as root with sudo, you must use a specific sudo command. For a better user experience, we recommend using an alias:

BashZsh
echo "alias exegol='sudo -E $(which exegol)'" >> ~/.bash_aliases
source ~/.bashrc

echo "alias exegol='sudo -E $(which exegol)'" >> ~/.zshrc
source ~/.zshrc

Warning

By giving the user direct access to docker, this allows the user to compromise the host and become root on the machine with full access to the file system.

For more information, official Docker documentation shows how to manage docker as a non root user [https://docs.docker.com/engine/install/linux-postinstall/#manage-docker-as-a-non-root-userm].

If you accept this risk because the environment is not critical and you prefer ease of use without the security control provided by sudo, you can apply the following method to use exegol directly as a user:

add the sudo group to the user
sudo usermod -aG docker $(id -u -n)

To apply the new group you must open a new shell
exit
OR "reload" the user groups with the newly added docker group
newgrp docker

Exegol should NOT be used as root on macOS. Docker Desktop (or Orbstack) do not require root privileges.

Exegol should NOT be used as admin on Windows. Docker Desktop doesn’t require administrator privileges.

4. Installation of the first Exegol image

Once the exegol wrapper is installed, you can download your first docker image with the following command:

exegol install

5. (Optional) Using Exegol auto-completion

Exegol (wrapper) supports auto-completion in many shell environments but there is a configuration to add (on the host) for this feature to work.

Important

The following configurations must be made in your host environment.

Tip

If the command register-python-argcomplete is not found on your host, you have to install it:

Using the system package manager
sudo apt install python3-argcomplete

Or using pip (check if pip packages are included in your $PATH)
pip3 install --user argcomplete

Or using pipx (check if pipx packages are included in your $PATH)
pipx install argcomplete

BashZshFishTcshPowerShell
You can enable Exegol auto-completion for your current user with your .bashrc or you can enable the auto-completion system-wide with bash-completion.

Via bash-completionVia .bashrc
To setup the auto-completion system-wide you first need to install bash-completion on your system (if not already installed).

sudo apt update && sudo apt install bash-completion

At this point you should have a /etc/bash_completion.d/ folder. It’s in there that you can add any auto-completion module that you want.

To generate and install the exegol completion configuration you can execute the following command with register-python-argcomplete:

register-python-argcomplete --no-defaults exegol | sudo tee /etc/bash_completion.d/exegol > /dev/null

Add the following command in your ~/.bashrc config:

eval "$(register-python-argcomplete --no-defaults exegol)"

Tip

If you have multiple tools using argcomplete you can also use the global completion [https://kislyuk.github.io/argcomplete/#global-completion] method (need bash >= 4.2).

To activate completions for zsh you need to have bashcompinit enabled in zsh:

autoload -U bashcompinit
bashcompinit

Afterwards you can enable completion by adding the following command in your ~/.zshrc config:

eval "$(register-python-argcomplete --no-defaults exegol)"

To activate completions for fish use:

register-python-argcomplete --no-defaults --shell fish exegol | source

or create new completion file, e.g:

register-python-argcomplete --no-defaults --shell fish exegol > ~/.config/fish/completions/exegol.fish

To activate completions for tcsh use:

eval `register-python-argcomplete --no-defaults --shell tcsh exegol`

To activate completions for PowerShell, first generate completion file :

register-python-argcomplete --no-defaults --shell powershell exegol > $HOME\Documents\WindowsPowerShell\exegol_completion.psm1

Warning

If the command register-python-argcomplete is not found, that means that python pip script are not in your PATH.
You can ty to fix your pip installation: Linux [https://stackoverflow.com/a/62823029] | MacOS [https://stackoverflow.com/a/43368894] | Windows [https://builtin.com/software-engineering-perspectives/pip-command-not-found]
Or find the direct Python script path, it might be something like: $HOME\AppData\Roaming\Python\Python311\Scripts\register-python-argcomplete (Python311 PATH depends on the version of Python you have installed, it must be updated to match your local setup).

Then import this completion file in $PROFILE:

echo "Import-Module '$HOME\Documents\WindowsPowerShell\exegol_completion.psm1'" >> $PROFILE

Tip

You can have Zsh style completion in PowerShell using this:

echo "Set-PSReadlineKeyHandler -Key Tab -Function MenuComplete" >> $PROFILE

 Updates

Updates

The whole Exegol can be updated through its own wrapper with exegol update (documentation
here).

Hint

Wrappers installed with pip don’t support auto-update. The wrapper itself can then can be updated as follows.

python3 -m pip install --upgrade exegol

 Frequently asked questions

Frequently asked questions

Below are the frequently asked questions regarding either features, the overall project or troubleshooting matters.

	What tools are installed in Exegol?

	Unable to connect to Docker

	Can I contribute to the project?

	Can I run Exegol on a macOS?

	Can I use a VPN with Exegol?

	Can I customize Exegol?

	Can I make my own Exegol image?

	How to install Exegol on an external drive?

	How to add a new tool?

	How do I get X11 to work on a non-Linux host?

	Can I install docker directly on my WSL2 distro instead of Docker Desktop ?

	How to retrieve your desktop login details ?

What tools are installed in Exegol?

The list of tools is dynamically generated for all Exegol images and available here.

Unable to connect to Docker

There are multiple checks to do to make sure Docker works properly.

Docker serviceDocker permissionsDocker socketSymbolic link
The Docker service must installed up and running.

	For Windows users: Docker Desktop for Windows must be up and running.

	For macOS users: Docker Desktop for Mac (or OrbStack [https://orbstack.dev/]) must be up and running.

Make sure the Docker permissions are consistent with the Exegol permissions. For instance, if you need sudo rights to use Docker, you’ll most likely need sudo to run Exegol smoothly. See the Exegol install guidance.

The following command can be used to see the docker socket that is used by default: docker context ls.

	For OrbStack [https://orbstack.dev/] users (on macOS), the “orb socket” must be used.

	For Docker Desktop users (macOS/Windows), the “Docker desktop socket” must be used.

	For Linux users, the default socket should work.

Switching context can be done with docker context use <context>.
For instance, switching from a Docker Desktop to OrbStack could be done with docker context use orbstack.

The following symbolic link must exist /var/run/docker.sock and point to the correct socket. Below is an example of what it should look like.

(Host) ~ $ ls -la /var/run/docker.sock
lrwxr-xr-x 1 root daemon 38 Jul 28 09:02 /var/run/docker.sock -> /Users/someuser/.orbstack/run/docker.sock

If the link does not exist, it could be created with the following command ln -sf /Users/someuser/.orbstack/run/docker.sock /var/run/docker.sock. This is an example for OrbStack [https://orbstack.dev/]. The command must be adapted to the user’s context.

Can I contribute to the project?

Yes, please refer to the contributors section.

Can I run Exegol on a macOS?

Yes. And both CPU architectures are supported (Intel X86_64 (AMD64) and Apple Silicon M1/M2 (ARM64).

Tip

We strongly advised macOS users to replace Docker Desktop with OrbStack [https://orbstack.dev/], allowing host network mode to work for instance, this it’s not supported by Docker Desktop for Mac.

Can I use a VPN with Exegol?

Yes. And you have multiple choices.

	The “YOLO” choice: at the container creation (i.e. when “starting” a container for the first time), give all permissions to the container so that you’re able to run openvpn in it and start the vpn. The command should look like exegol start <container_name> <image_name> --privileged.

	The better choice: use the --vpn option at the container creation: exegol start <container_name> <image_name> --vpn <myconf.ovpn>. It’s the easiest and more secure choice. See the start help here).

Warning

Creating a privileged container (c.f. the “YOLO” choice) exposes you to higher security risks. This should be avoided.

Can I customize Exegol?

Yes, please refer to the “my-resources” documentation that explains how to automatically setup your changes to your Exegol containers.
Also, see the “wrapper’s advanced-uses” documentation to see how to edit Exegol’s conf among other things.
You could also want to make your own Exegol image

Can I make my own Exegol image?

Yes. You will need to create a dockerfile (e.g. CUSTOM.dockerfile) at the root of the exegol-images module next to the other dockerfiles (i.e. /path/to/Exegol/exegol-docker-build/) containing the instructions you want the build process to follow.

Then, run something like exegol install "myimagename" "CUSTOM" to build the image locally. See the install documentation: install action.

How to install Exegol on an external drive?

Exegol’s wrapper is lightweight, but it’s Docker images can take up some space, and users may not have enough room in their internal HDD/SSD, hence the question. This usually comes down to “how can I install Docker on an external drive?”, and the answer depends on the host.

Tip

Use a fast drive, otherwise Exegol will get real slow.

For macOS and Windows users, this can be configured in the Docker Desktop dashboard (in Settings > Resources > Advanced > Disk image location).

[image: Disk Image Location Setting (Docker Desktop)]

How to add a new tool?

“Adding a tool” can mean many things. Depending on that, you’ll get a different answer. So let’s answer most of them.

If you want to add a tool:

	in the official Exegol images: refer to the contribution guidance.

	in your own custom local image: refer to the contribution guidance as well, but instead of creating a Pull Request at the end to offer your contribution, just build the image locally with the wrapper and enjoy your custom local image.

	in a live container: that’s your container, you can do whatever you whish in it ;)

	automatically in all containers at their creation: refer to the “my-resources” documentation.

How do I get X11 to work on a non-Linux host?

X11, or X Window System, is a graphical windowing system that provides a framework for creating and managing graphical user interfaces (GUIs) in Unix-like operating systems.

X11 sharing between an Exegol container and a host allows a graphical application running within the container to display its GUI on the host’s X11 server. This means you can run graphical applications in Exegol containers and have them appear as if they were running directly on the host machine. It enables the execution of GUI-based applications in isolated containers while interacting with them through the host’s graphical interface.

For macOS users, XQuartz is needed. It’s listed in the install requirements.

Note

Exegol’s wrapper automatically starts XQuartz on macOS hosts when needed. But if for some reason it gets manually closed by the users while a container is running, X11 sharing will not work. Restarting the container with exegol restart <container> will restart XQuartz automatically if needed.

Can I install docker directly on my WSL2 distro instead of Docker Desktop ?

Yes, it’s possible to install docker directly on WSL2 rather than using Docker Desktop, but you’ll be restricted to your WSL2 environment and its constraints.

Although Docker Desktop is incomplete, it does offer a few advantages (exegol can be used from powershell / cmd, windows folder sharing with the exegol workstation, etc).
We therefore recommend Docker Desktop as the official support for Exegol.

We do not guarantee wrapper stability with a directly installed WSL docker.

How to retrieve your desktop login details ?

The container’s root password can be obtained with exegol info <container> (i.e. this is needed when using the desktop feature)

 Tips & tricks

Tips & tricks

Below are some of the tips and tricks that are good to keep in mind when using Exegol.

	Change a container’s time

	Share files or notes with targets and collaborators

	Dynamic history commands

	The best reverse shells

	Keyboard shortcuts

	Useful aliases

	Network related

	Shell

	Quick service

	Tools optimization

Change a container’s time

Changing a container’s time with date requires elevated permissions on the container, and messes up with the host’s time.
There is however and alternative, using faketime (see faketime ubuntu manpage [https://manpages.ubuntu.com/manpages/trusty/man1/faketime.1.html]) that allows to change the time of the container easily, without needing particular permissions, without affecting the host. This is especially useful when working with Kerberos targets that are out of sync.

Faketime manipulates the system time for a given child command. For example with zsh, a new shell is opened with a spoofed time that will only be spoofed for this extact shell session and commands executed in it.

faketime 'YYYY-MM-DD hh:mm:ss' zsh

Note

Here is an example of how faketime can be used.

When doing Active Directory attacks against Kerberos targets, a clock skew error could be raised such as KRB_AP_ERR_SKEW. This means the authenticating machine (operator) and the destination (Key Distribution Center, a.k.a. KDC) are not in sync, clock-wise.

Running any Impacket [https://github.com/fortra/impacket] with the -debug flag will print the server time. The operator can then use faketime to open a new zsh shell with the right time and timezone and conduct the scenario as previously intended.

The following command can be used to print the time in UTC format and compare it with the server time: date --utc.

Note: careful with the timezones. If they differ between the operator and the KDC, the delta needs to be taken into account

Share files or notes with targets and collaborators

The following tools or commands can be used to pop a temporary file or http server: updog, goshs, http-server, http-put-server, ftp-server, smbserver.py.

In order to shares notes during an engagement, trilium (https://github.com/zadam/trilium) can be used.

Dynamic history commands

Many commands in the pre-filled history rely on environment variables such as $DOMAIN, $USER, $PASSWORD, etc.
Those variables can be set manually or by using the profile.sh file in /opt/tools/Exegol-history/.
The proper lines can be filled and uncommented, and then the shell can be reloaded with exec zsh in order to apply the changes.
This allows users to easily look for, and use, commands in the history, without changing the values every time.

The best reverse shells

	shellerator can be used to generate a reverse shell command dynmically

	on the attacker’s side, a reverse shell obtained through a netcat tunnel can be improved (see ropnop.com [https://blog.ropnop.com/upgrading-simple-shells-to-fully-interactive-ttys/] or 0xffsec.com [https://0xffsec.com/handbook/shells/full-tty/])

	simple alternative way to have an upgrade netcat reverse shell: use rlwrap <netcat listener command>

	instead of using netcat and “upgrade” the shell manually, pwncat-cs (calebstewart/pwncat [https://github.com/calebstewart/pwncat]) can be used to obtain an even better reverse shell experience (especially with UNIX-like targets).

Keyboard shortcuts

	ctrl+q: when writing a command, let’s say a user misses an information (e.g. IP address). The shortcut can be used to save the half-typed command, look for the value, and then finish the command. The user doesn’t have to cancel the command, look for the info, and write the command all over again. This is known as the push-line feature (see sgeb.io [https://sgeb.io/posts/bash-zsh-half-typed-commands/]).

	ctrl + r: look for something in the history

	ctrl + t: look for a file or directory with a fuzzy finder

	ctrl + a: move to the beginning of the line

	ctrl + e: move to the end of the line

	ctrl + ←: move one word backward

	ctrl + →: move one word forward

	ctrl + l: clear the screen

Useful aliases

Tip

To see every alias in your exegol image, run the command:

alias

Tip

You can see the complete command configured for an alias with the command:

alias <alias_name>

Warning

Some aliases are not available before image 3.1.5.

Here’s a list of useful aliases designed to save you time:

Network related

	ipa: List network interfaces in short and colorful way

	ipr: List network routes in short and colorful way

	pc: Shortcut to proxychains

	ncvz: Shortcut to test an open TCP port

Shell

	ws: Shortcut to cd /workspace

	_: Shortcut to sudo

	xcopy: Copy a file to clipboard

	xpaste: Create a file from clipboard

	xshow: Print clipboard

	sed-empty-line: Removes empty lines

	sed-comment-line: Removes commented lines

	history-dump: Export full history of commands with date and time of execution

Quick service

	http-put-server: Python web server put capable

	http-server: Shortcut to classic Python web server

	php-server: Server a PHP webserver on current directory using port 8080

Tools optimization

	hcat: Automatic hashcat format solver with fuzzy finder wordlist

	hjohn: Automatic john the ripper format solver with fuzzy finder wordlist

	scan-range: Nmap shortcut to find host in a specified network range

	nse: Find nmap NSE script

	urlencode: Encodes arguments in URL format

	urldecode: Decodes arguments from URL format

 Python Wrapper

Python Wrapper

The Exegol project regroups many things (docker images, offline resources, custom configurations, aliases, history commands, multi-architecture support and many others). In order to make all the tech involved easy to use, and provide some unique entrypoint to the whole setup, a Python wrapper was created.

The Python wrapper handles all Docker and Git operations, can manage multiple images and containers at once and give the user the best experience possible, suited for beginners as well as advanced people.

The wrapper knows multiple actions.

	Install an image : exegol install

	Create/start/enter a container : exegol start

	Show info on containers and images : exegol info

	Stop a container : exegol stop

	Remove a container : exegol remove

	Uninstall an image : exegol uninstall

	Get help and advanced usage : exegol --help

	Help and examples can be obtained for each action directly from the wrapper with the following command: exegol <action> -h (action: install/start/stop/etc.).

All actions are documented in the exegol-wrapper part of this doc (e.g. info, start, version, …)

Below is a, non-exhaustive, list of what the wrapper supports:

	Feature

	Description

	Display sharing

	Sharing of the graphic environment between the container and the host

	Desktop

	Hosts a complete graphics environment available via a web page or VNC

	Workspace

	Persistent and shared workspace with the host

	Update-fs

	Permission sharing between the container and the host

	OpenVPN connection

	Opening an isolated VPN tunnel dedicated to the exegol container

	Shell logging

	Recording of sessions (input and output) in log files with date and time

	Shared network

	Sharing the host’s network interfaces

	Shared timezones

	Sharing the host’s timezone configuration

	Exegol-resources

	Easy access to a collection of resources and tools

	My-resources

	User space dedicated to customization

	Volume sharing

	Support for specific volume addition

	Port sharing

	Support for port publishing

	Env. variables

	Support for environment variable configuration

	Device sharing

	Support for hardware sharing

	Custom hostname

	Support for customizing a specific container hostname

	Comments

	User can add any text comments to the container

	Capabilities

	Support for adding specific capabilities

	Privileged

	Support of the privileged mode

	Multi-architecture

	Support for AMD64 and ARM64 architectures

	Local image

	Customized local image building

	Remote image

	Pre-built image available for download

	Command execution

	Execution of specific command

	Daemon execution

	Support of the command execution in the background

	Temporary containers

	Support for command execution in a dedicated and temporary environment

Note

Exegol uses Docker images and containers. Understanding the difference is essential to understand Exegol.

	image: think of it as an immutable template. They cannot be executed as-is and serve as input for containers. It’s not possible to open a shell in an image.

	container: a container rests upon an image. A container is created for a certain image at a certain time. It’s possible to open a shell in a container. Careful though, once a container is created, updating the image it was created upon won’t have any impact on the container. In order to enjoy the new things, a new container must be created upon that updated image.

Features

The Exegol wrapper has many features to automatically and transparently manage different configurations to facilitate the use and creation of docker containers.

X11 sharing (GUI)

By default exegol configures the new container and host to allow the execution to the display of graphical window launched from an exegol container. This is achieved through X11 sharing.

For example, if bloodhound is launched in an exegol container, the graphical window (GUI) will be displayed in the user’s graphic environment.

This feature can be disabled manually with the option --disable-X11 of the start action.

Desktop

[image: Exegol Desktop Overview]
On some systems, it may be difficult to have or share an X11 environment. Some users prefer to have a full graphical desktop environment rather than just graphical applications.

To meet this need, Exegol is able to host a complete graphical environment within its container since version 4.3.0 of the wrapper and 3.1.2 of the images.

This environment can then be made available to others in a variety of ways. The default protocol is currently HTTP, but the user can change the configuration to use the VNC alternative.

This feature can be enabled manually with the option --desktop of the start action.

Tip

The default behavior and configuration of the desktop mode can be changed in the configuration of Exegol.

Desktop access is protected by PAM authentication. To log in, it is essential to retrieve the login credentials and the URL where the desktop is accessible.
These details can be obtained from the container’s information, either at the time of container launch or by using the following command :

exegol info CONTAINER_NAME

⭐ Container summary
┌──────────────────┬───────────────────────────────────────┐
│ Name │ gui │
│ Image │ nightly - v.9060fa56 (Up to date) │
├──────────────────┼───────────────────────────────────────┤
│ Credentials │ root : iozLHIjJFxoOLTTaNymO50uKT2RlvI │
│ Remote Desktop │ http://localhost:58089 │
│ Console GUI │ On ✔ (X11) │
│ Network │ host │
│ Timezone │ Off 🪓 │
│ Exegol resources │ On ✔ (/opt/resources) │
│ My resources │ On ✔ (/opt/my-resources) │
│ Shell logging │ Off 🪓 │
│ Privileged │ Off ✔ │
│ Workspace │ Dedicated (/workspace) │
└──────────────────┴───────────────────────────────────────┘

Workspace

Exegol always creates within a container a persistent workspace (even after deleting the container) and shared with the host.

By default a folder will be created on the host and shared with the container. This folder will be created in ~/.exegol/workspaces/ with the name of the exegol container.

Tip

The default location of workspace volumes can be changed in the configuration of Exegol.

The user can also create an Exegol container with an existing custom workspace folder (with already existing data) regardless of its location in the file system.

See the options -w WORKSPACE_PATH and -cwd of the start action for more details.

Update-fs

The root user is used by default in Exegol containers which poses problems of permissions when accessing the project documents from the host.
To remedy this without compromising, a shared permission system exists allowing the host user to have read and write access to files created from the container.

This system is automatically activated when a new default workspace is created.

Warning

When the user uses an existing custom folder as workspace, this system is disabled by default! This feature can be enabled by default by changing the configuration of Exegol.

Its activation is possible manually (see the option --update-fs of the start action) but it will lead to the modification of the folder and its sub-folders permissions (as g+rws).

If the user does not have the rights to perform such an operation, a sudo command will be proposed to the user that he will have to execute manually to apply the necessary permissions for the proper functioning of the functionality (as chgrp + g+rws).

Tip

When the default configuration of this feature is changed and the update will be enabled by default, the option --update-fs can still be used to manually disable the feature in specific cases.

OpenVPN connection

Exegol supports OpenVPN tunnel configuration to automatically establish a VPN tunnel at container startup.

Exegol supports certificate authentication (all files should preferably be included in a single ovpn file) but also user/password authentication through an authentication file (to allow non-interactive and transparent authentication).

Tip

A folder can also be used in the case of a multi-file configuration (with relative paths!) and the configuration file must have the .ovpn extension (Only one .ovpn file will be loaded by exegol).

See the options --vpn VPN and --vpn-auth VPN_AUTH of the start action for more details.

Tip

In case of problem, to troubleshoot a VPN connection, the log of OpenVPN can be retrieved within the container in the /var/log/exegol/vpn.log file

Shell logging

Within the framework of a mission, it is necessary to log all actions performed during a pentest, red team etc.
To meet this need, Exegol has a feature to automatically record everything that is displayed (stdout / stderr) but also all entries (stdin).

See the option --log of the start action to enable the feature.

Hint

When the option is enabled upon creation of a new container, all shells created for this container will be automatically logged.

If the container was created without this option, the shells can still be logged individually by adding the option in the start command of each shell.

The date and time of each command is displayed thanks to the PS1 of zsh.

The logs are automatically saved in the /workspace/logs folder. Each log file is automatically compressed with gzip at the end of the session to optimize disk space.
The automatic compression of log files can be disabled manually with the start action --log-compress parameter or change the default behavior in the Exegol configuration file.

Hint

When the default configuration of the log compression is changed from the config file and the feature will be disabled by default, the option --log-compress can still be used to manually enable the feature in specific cases.

Warning

The logs should NOT be consulted from the exegol container but from the host to avoid loops and duplication of data in the logs.

There are (since exegol images version 3.0.0) different methods of shell logging.
The shell logging method can be selected manually with the start action --log-method parameter or by default in the configuration file of Exegol.

asciinema (default)script
The shell logging method asciinema is available from exegol images version 3.0.0.
This new mode allows to consult sessions in video format taking into account the interactive environment.
It is also possible to manually upload and share recordings, useful for demonstrations for example

Here is a quick demonstration:

 Docker images

Docker images

The Docker images are the heart of the Exegol project. A neat choice of tools, configurations, aliases, history commands, and various customizations are prepared in multiple images adapted for multiple uses: web hacking, Active Directory, OSINT (Open Source INTelligence), etc.

All images are available on the official Dockerhub registry [https://hub.docker.com/repository/docker/nwodtuhs/exegol]. This allows to offer pre-built, compressed images, so that users don’t have to build their own image, but users that choose to do so can. Pulling pre-built images, or building one, can be done with exegol install (documentation
here).

	Image name

	Description

	full

	Includes all the tools supported by Exegol (warning: this is the heaviest image)

	ad

	Includes tools for Active Directory / internal pentesting only.

	web

	Includes tools for Web pentesting only.

	light

	Includes the lightest and most used tools for various purposes.

	osint

	Includes tools for OSINT.

	nightly

	(for developers and advanced users) contains the latest updates. This image can be unstable!

Note

Exegol uses Docker images and containers. Understanding the difference is essential to understand Exegol.

	image: think of it as an immutable template. They cannot be executed as-is and serve as input for containers. It’s not possible to open a shell in an image.

	container: a container rests upon an image. A container is created for a certain image at a certain time. It’s possible to open a shell in a container. Careful though, once a container is created, updating the image it was created upon won’t have any impact on the container. In order to enjoy the new things, a new container must be created upon that updated image.

 Offline resources

Offline resources

Exegol’s “offline resources” are a neat choice of standalone tools and scripts that are often used during penetration tests,
CTFs and red-teams, like LinPEAS, WinPEAS, LinEnum, PrivescCheck, SysinternalsSuite, mimikatz, Rubeus, PowerSploit and many more.
Exegol users don’t have to download those resources again every time they’re needed anymore.
Everything is managed by the wrapper and they are shared with every container (at /opt/resources).

 install action

install action

This action can be used to install an Exegol image. At least one Exegol image is required to create and start a container and enjoy Exegol.

When this action is used, the image can either be:

	downloaded (i.e. “pulled” in Docker terms) from the official Dockerhub registry [https://hub.docker.com/repository/docker/nwodtuhs/exegol]. In this case, a compressed and pre-built image is downloaded in the form of layers, and then uncompressed.

	built locally by following the instructions of a Dockerfile offered on the Exegol-images GitHub repo [https://github.com/ThePorgs/Exegol]. Here again, no need to download the dockerfile manually, all of them are already at /path/to/Exegol/exegol-docker-build/.

Hint

The install action can be used without any particular argument or option. the wrapper will then enter in an interactive TUI (Text-based User Interface) mode where the user will be asked to choose what image to install or build.

exegol install

Options

	Option

	Description

	IMAGE

	Optional positional argument to indicate the image to install (if downloading), or the name of the image to build (if building locally).

	BUILD_PROFILE

	Optional positional argument to indicate the source profile to use if building locally.

	--build-log

	Write logs to the path specified if building locally.

	--build-path

	Custom path to the dockerfiles and sources.

Command examples

#Install or build interactively an exegol image
exegol install

#Install or update the full image
exegol install full

#Build interactively a local image named myimage
exegol install myimage

#Build the myimage image based on the full profile and log the operation
exegol install myimage full --build-log "/tmp/build.log"

 start action

start action

This action can be used to start a container. At least one Exegol image is required to create and start a container and enjoy Exegol. Installing an image can be done with exegol install (documentation
here).

When this action is used, the following process is applied:

	if no Exegol image is installed, the user is asked to specify which one to install of build, and the process continues

	then, if the container to start doesn’t already exist, it is created based on an Exegol image and a few settings to specify, and the process continues

	then, the container is started and a shell is opened

Hint

The start action can be used without any additional argument or option. the wrapper will then enter in an interactive TUI (Text-based User Interface) mode where the user will be asked to choose a few settings.

exegol start

Options

A single option exist to target an Exegol container.
If this container exists, it will be started if it is not already the case and a shell will be spawned to offer an interactive console to the user

	Option

	Description

	CONTAINER

	Tag used to target an Exegol container

Many options exist to customize the creation of exegol container.

Tip

The default options of some commands can be changed in the exegol configuration file.

Global options

	Option

	Description

	IMAGE

	Tag of the exegol image to use to create a new exegol container

	-w WORKSPACE_PATH, --workspace WORKSPACE_PATH

	The specified host folder will be linked to the /workspace folder in the container.

	-cwd, --cwd-mount

	This option is a shortcut to set the /workspace folder to the user’s current working directory (pwd).

	-fs, --update-fs

	Modifies the permissions of folders and sub-folders shared in your workspace to access the files created within the container using your host user account. (default: Disabled)

	-V VOLUMES, --volume VOLUMES

	Share a new volume between host and exegol (format: –volume /path/on/host/:/path/in/container/[:ro|rw]).

	-p PORTS, --port PORTS

	Share a network port between host and exegol (format: –port [<host_ipv4>:]<host_port>[:<container_port>][:<protocol>]. This configuration will disable the shared network with the host.

	--hostname HOSTNAME

	Set a custom hostname to the exegol container (default: exegol-<name>)

	--cap CAPABILITIES

	(dangerous) Capabilities allow to add specific privileges to the container (e.g. need to mount volumes, perform low-level operations on the network, etc).

	--privileged

	(dangerous) give extended privileges at the container creation (e.g. needed to mount things, to use wifi or bluetooth)

	-d DEVICES, --device DEVICES

	Add host device(s) at the container creation (example: -d /dev/ttyACM0 -d /dev/bus/usb/).

	--disable-X11

	Disable X11 sharing to run GUI-based applications. (default: Enabled)

	--disable-my-resources

	Disable the mount of the shared resources (/opt/my-resources) from the host (/home/dramelac/.exegol/my-resources) (default: Enabled)

	--disable-exegol-resources

	Disable the mount of the exegol resources (/opt/resources) from the host (/home/dramelac/Documents/tools/Exegol/exegol-resources) (default: Enabled)

	--disable-shared-network

	Disable the sharing of the host’s network interfaces with exegol (default: Enabled)

	--disable-shared-timezones

	Disable the sharing of the host’s time and timezone configuration with exegol (default: Enabled)

Virtual desktop

In addition to the X11 sharing functionality, Exegol can generate its own graphical environment and make it available to the user in a variety of ways.
By default, a web interface gives users access to their own containerized graphical desktop.

	Option

	Description

	--desktop

	Enable or disable the Exegol desktop feature (default: Disabled)

	--desktop-config

	Configure your exegol desktop (vnc or http) and its exposure (format: proto[:ip[:port]]) (default: http:127.0.0.1:<random>)

VPN

An additional feature of Exegol is the VPN tunnel option (OpenVPN).
Just provide an ovpn configuration to exegol and the container will take care of starting the tunnel at each startup.

	Option

	Description

	--vpn VPN

	Setup an OpenVPN connection at the container creation (example: –vpn /home/user/vpn/conf.ovpn)

	--vpn-auth VPN_AUTH

	Enter the credentials with a file (first line: username, second line: password) to establish the VPN connection automatically (example: –vpn-auth /home/user/vpn/auth.txt)

Warning

All the options seen previously are taken into account only for the creation of a new container.
It is not possible to modify the configuration of an existing container.
These options will be ignored if a container with the same name already exists.

Shell logging

One of the functions of exegol very useful in a professional context is the shell logging.
This feature allows the user to record everything that happens in the exegol container (commands typed and responses).

	Option

	Description

	-l, --log

	Enable shell logging (commands and outputs) on exegol to /workspace/logs/ (default: Disabled)

	--log-method

	Select a shell logging method used to record the session (default: asciinema)

	--log-compress

	Enable or disable the automatic compression of log files at the end of the session (default: Enabled)

Tip

When the -l/--log option is enabled during the creation of a new container, all future shells will be automatically logged for this container.

Session specific

The options specific to the start of the interactive session

	Option

	Description

	-e ENVS, --env ENVS

	And an environment variable on Exegol (format: –env KEY=value). The variables configured during the creation of the container will be persistent in all shells. If the container already exists, the variable will be present only in the current shell.

	-s SHELL, --shell SHELL

	Select a shell environment to launch at startup (default: zsh)

Tip

The environment variables configured with --env ENVS during the creation of a new container will be available to all processes of the container during the entire life cycle of the container.

Command examples

Start interactively a container
exegol start

Create a demo container using full image
exegol start demo full

Spawn a shell from demo container
exegol start demo

Create a container test with a custom shared workspace
exegol start test full -w "./project/pentest/"

Create a container test sharing the current working directory
exegol start test full -cwd

Create a container htb with a VPN
exegol start htb full --vpn "~/vpn/lab_Dramelac.ovpn"

Create a container app with custom volume
exegol start app full -V "/var/app/:/app/"

Get a shell based on tmux
exegol start --shell tmux

Share a specific hardware device (like Proxmark)
exegol start -d "/dev/ttyACM0"

Share every USB device connected to the host
exegol start -d "/dev/bus/usb/"

 info action

info action

The info action aims at displaying all the information specific to the Exegol project on the current system.
This action can also be used by targeting a specific container to display its configuration in detail.

Depending on the verbosity level specified in the command-line, the information displayed will be more or less detailed accordingly.

Standard (default)VerboseAdvancedDebug
exegol info

	List of available Exegol Images

	Name of the image

	Size of each image (disk space if the image is installed, otherwise its compressed size to download for installation)

	Status of each image

	Not installed (Image available for download from dockerhub)

	Up to date (The latest version of the image is installed and ready to be used)

	Update available (A new version is available for download on dockerhub)

	Outdated (Old version of an image that has been updated since)

	Local image (Locally built image)

	Discontinued (if your image is no longer available on dockerhub)

	List of Exegol Containers

	Name of each container

	Container status (Stopped or running)

	Image name (Exegol image used as a base to create the container)

	Configurations (Display of non-default configurations)

exegol info -v

In the verbose mode, the following additional elements are displayed. Everything from the lower verbosity level is still displayed.

	Enumerate every user configuration (see details here)

	In the list of available Exegol Images

	Image ID

	Build date

	Image architecture (AMD64 / ARM64)

	In the list of Exegol Containers

	Container id

	Full configuration

	List of non-technical volumes

	List of Devices

	List of Ports (Applicable if network sharing with host is not enabled)

	List of custom environment variables

exegol info -vv

In the advanced mode, the following additional elements are displayed. Everything from the lower verbosity levels is still displayed.

	Enumerate the settings from the user configuration at ~/.exegol/config.yml (see details here)

	List the different exegol modules

	Modules name

	Their update status

	Their git branch (if applicable)

exegol info -vvv

In the debug mode, everything from the lower verbosity levels is still displayed, as well as logs from internal methods and functions. Those logs can be useful for maintainers and developers in case of bug, or for making sure everything works properly.

Options

The info action does not have many parameters, its use is relatively simple. This action can either be used to gather general information (available images, containers, user configs, etc.), or gather information about a specific container and display its configuration.

	Option

	Description

	CONTAINER

	Optional positional argument to indicate the container tag of which to display the configuration.

Global options can still be used, like for any action.

	Option

	Description

	-h, --help

	Show the help message of any action

	-v, --verbose

	Verbosity level (-v for verbose, -vv for advanced, -vvv for debug)

	-q, --quiet

	Show no information at all

	-k, --insecure

	Allow insecure server connections for web requests, e.g. when fetching info from DockerHub (default: Secure)

	--offline

	Run exegol in offline mode, no request will be made on internet (default: Disable)

	--arch {arm64,amd64}

	Overwrite default image architecture (default: host’s arch)

Command examples

Print containers and images essentials information:
exegol info

Print the detailed configuration of the "demo" container:
exegol info demo

Print verbose information:
exegol info -v

Print advanced information:
exegol info -vv

Print debug information:
exegol info -vvv

 exec action

exec action

This action allows to run a single command in a single container instead of loading a full interactive shell.

When this action is used it is possible to execute a command either in:

	a temporary container created especially to execute the command, and automatically deleted at the end of the execution: the name of an exegol image must be provided from which a temporary container will be created

	a standard Exegol container (already existing, or not): the name of an exegol container must then be provided. This container will be created in interactive mode if it does not already exist

The executed command can be executed either:

	in the background mode (i.e. like a daemon): exegol terminates immediately after the command is launched and does not wait for its execution to be completed. No process is left hanging (useful when running GUI apps for instance).

	in standard mode: exegol will wait for the end of the process to stop the container (and delete it if

Tip

In standard execution mode, it is possible to ask exegol to display the command output (stdout/stderr) in the terminal by adding -v parameter.

Options

Since the exec action can also create containers, it shares the same parameters as the start action.

There are also additional parameters, unique to the exec action:

	Option

	Description

	CONTAINER or IMAGE

	This option indicates the container name to use to execute the command. If the --tmp parameter is used, this name will be used to target an image.

	COMMAND

	Single command to execute in the container.

	-b, --background

	Executes the command in background as a daemon.

	--tmp

	Creates a dedicated and temporary container to execute the command.

Command examples

Execute the command bloodhound in the container demo:
exegol exec demo bloodhound

Execute the command 'nmap -h' with console output in the container demo:
exegol exec -v demo 'nmap -h'

Execute a command in background within the demo container:
exegol exec -b demo bloodhound

Execute the command bloodhound in a temporary container based on the full image:
exegol exec --tmp full bloodhound

Execute a command in background with a temporary container:
exegol exec -b --tmp full bloodhound

Execute Wireshark in background, in a privileged temporary container:
exegol exec --background --tmp --privileged "nightly" "wireshark"

Execute the command wireshark with network admin privileged:
exegol exec -b --tmp --cap NET_ADMIN full wireshark

 update action

update action

The update process

The exegol wrapper has an update action dedicated to updating the different modules (wrapper, resources, etc.) of the project as well as the (docker) Exegol images.

Modules updates

This action make sure the local copies of the following repositories are up to date:

	Exegol [https://github.com/ThePorgs/Exegol] (wrapper code). If the wrapper has been installed with Pip, it will not be able to self-update, updating the package through Pip will be required (e.g. python3 -m pip install --upgrade exegol).

	Exegol-images [https://github.com/ThePorgs/Exegol-images] (docker building files)

	Exegol-resources [https://github.com/ThePorgs/Exegol-resources] (offline resources, exegol-resources). This module is optional, and users can choose to install/update it at any time.

Tip

When running exegol update -v, the user will be able to choose from what branch them module should be synchronized with, allowing to switch easily between release and dev versions.

Images updates

Once the local code base is updated, the wrapper compares the installed Exegol images with those offered on the Dockerhub registry. If no parameters have been provided at command-line, an interactive selection will be possible to choose the images to update (if updates are available).

Hint

Older versions of images will be automatically deleted if they are no longer used by any container and if a newer version of the same image is installed.
This automatic deletion behavior is a default configuration that can be modified in the configuration file if needed, but it’s advised not to change it as disk space is not unlimited and Exegol image can take up to 30GB.

Options

The options of the update action are the following.

	Option

	Description

	IMAGE

	This option specifies what image to update.

	--skip-git

	Skip modules updates.

	--skip-images

	Skip images updates.

Command examples

Update interactively an exegol image:
exegol update

Update the full image:
exegol update full

Update the full image without updating exegol modules:
exegol update --skip-git full

Update exegol modules and have the option to change branch without updating docker image:
exegol update -v --skip-images

 stop action

stop action

The purpose of the stop action is to stop one or more Exegol containers.

If these containers have a VPN configuration, shutting down the container will cause the VPN tunnel to be disconnected.

Options

The options of the stop action are limited to selecting the container(s) to be stopped.

	Option

	Description

	CONTAINER

	Tag used to target one or more Exegol containers

Command examples

Stop interactively one or more containers:
exegol stop

Stop the "demo" container:
exegol stop "demo"

Stop the "demo", "test" and "dev" container:
exegol stop "demo" "test" "dev"

 restart action

restart action

The purpose of the restart action is to stop and directly restart an Exegol container.

If these containers have a privileged or device configuration, restarting the container will refresh the available devices inside the container.

Warning

Restarting a container will reset the hosts, resolv.conf files (and probably more).

Options

The options of the restart action are limited to selecting the container to be restarted and some starting options that can be also found on the start action.

	Option

	Description

	CONTAINER

	Tag used to target the Exegol containers to restart

Command examples

Restart interactively one container:
exegol restart

Restart the "demo" container:
exegol restart "demo"

 remove action

remove action

The purpose of the remove action is to remove one or more Exegol container.

If the deleted container was using an outdated image, the wrapper will (by default) try to delete that outdated image automatically (unless this default behavior is changed in the exegol configuration file, which is not advised since disk space is not limited and Exegol images can take up to 30GB).

When deleting the container, the wrapper will check if the content of the /workspace volume is empty. If the workspace is empty, exegol will automatically delete the folder on the host, otherwise it will explicitly ask the user if the workspace content should be deleted or not.

Options

The options of the remove action are limited to selecting the container(s) to be removed and forcing the removal without asking the user for interactive confirmation.

	Option

	Description

	CONTAINER

	Tag used to target one or more Exegol containers

	-F, --force

	Remove container without interactive user confirmation (confirmation will still be required for removing non-empty workspaces).

Command examples

Remove interactively one or more containers:
exegol remove

Remove the "demo" container:
exegol remove "demo"

Remove the "demo", "test" and "dev" container without asking for user confirmation:
exegol remove -F "demo" "test" "dev"

 uninstall action

uninstall action

The purpose of the uninstall action is to remove one or more Exegol images.

Warning

The wrapper will try to delete the selected exegol images but this can only work if the selected images are not used by any container anymore. A container based on an image that doesn’t exist anymore cannot run.

Options

The options of the uninstall action are limited to selecting the image(s) to be removed, and forcing the removal without asking the user for interactive confirmation.

	Option

	Description

	IMAGE

	Tag used to target one or more Exegol images

	-F, --force

	Remove image without interactive user confirmation.

Command examples

Remove interactively one or more containers:
exegol uninstall

Remove the "full" container:
exegol uninstall "full"

Remove the "full", "ad" and "web" container without asking for user confirmation:
exegol uninstall -F "full" "ad" "web"

 version action

version action

The version action is mostly used for debugging purposes, it only displays information about the Exegol setup on the system.

In debug mode (-vvv), it also displays information about the system and wrapper installation context.

Options

The options available for the version action are the global options that affect the behavior of all exegol actions.

	Option

	Description

	-h, --help

	Show the help message of any action

	-v, --verbose

	Verbosity level (-v for verbose, -vv for advanced, -vvv for debug)

	-q, --quiet

	Show no information at all

	-k, --insecure

	Allow insecure server connections for web requests, e.g. when fetching info from DockerHub (default: Secure)

	--offline

	Run exegol in offline mode, no request will be made on internet (default: Disable)

	--arch {arm64,amd64}

	Overwrite default image architecture (default: host’s arch)

Command examples

Show version information
exegol version

Show version and system information
exegol version -vvv

 Advanced uses

Advanced uses

	Exegol home directory

	Exegol configuration

	My-resources

	Local builds

Exegol home directory

The ~/.exegol folder exists in the user’s home folder to centralize “exegol resources”, “my-resources”, volumes and also the configuration file.

	The configuration file (YAML) is located at ~/.exegol/config.yml and is generated by the wrapper during the first execution, with the default configurations.

	By default, every exegol container has a workspace volume. If the path of this volume is not specified by the user (see start parameters), a folder with the name of the container will be created in the “private workspace” folder. By default, this folder is located at ~/.exegol/workspaces/.

Exegol configuration

The Exegol wrapper is configured with many default settings. Most of them can be modified with a simple argument.
For productivity purposes, setting a different default behavior once and not have to add the same options everytime is interesting. For this exact purpose, a configuration file exists that allows users to persistently change the behavior and operations to be performed by default.

The user configuration currently in place can be viewed with the command: exegol info -v. More information on the info page.

Within the ~/.exegol/config.yml file, several settings can be configured to customize the Exegol experience, all distributed in multiple sections below.

VolumesConfig
The volume section allows to change the default path for various volumes.

Warning

Volume path can be changed at any time but already existing containers will not be affected by the update and will keep the original paths they were created with.

	my_resources_path: the “my-resources” volume is a storage space dedicated to the user to customize his environment and tools. This volume is, by default, shared across all exegol containers. See details about it.

	exegol_resources_path: exegol-resources are data and static tools downloaded in addition to docker images. These tools are complementary and are accessible directly from the host. See details.

	private_workspace_path: when containers do not have an explicitly declared workspace at their creation (i.e. with --cwd-mount, or --workspace), a dedicated folder will be created at this location to share the workspace with the host but also to save the data after deleting the container.

The config section allows you to modify the default behavior of the Exegol wrapper.

	auto_check_update: enables automatic check for wrapper update. (Default: True)

	auto_remove_image: automatically remove outdated image when they are no longer used. (Default: True)

	auto_update_workspace_fs: automatically modifies the permissions of folders and sub-folders in your workspace by default to enable file sharing between the container with your host user. (Default: False)

	default_start_shell: default shell command to start. (Default: zsh)

Shell loggingDesktop
Change the configuration of the shell logging functionality.

	logging_method: Choice of the method used to record the sessions, script or asciinema. (Default: asciinema)

	enable_log_compression: Enable automatic compression of log files (with gzip). (Default: True)

Change the configuration of the virtual Desktop feature.

	enabled_by_default: Enables or not the desktop mode by default. If this attribute is set to True, then using the CLI --desktop option will be inverted and will DISABLE the feature (Default: False)

	default_protocol: Default desktop protocol,can be http, or vnc depending on your wrapper / image version. (Default: http)

	localhost_by_default: Desktop service is exposed on localhost by default. If set to true, services will be exposed on localhost (127.0.0.1) otherwise it will be exposed on 0.0.0.0. This setting can be overwritten with –desktop-config. (Default: True)

My-resources

“My-resources” is a major feature allowing Exegol users to have a volume, shared with all Exegol containers, that can centralize their own resources and configurations. It allows users to enjoy their own tools that are not available in Exegol but also to customize their Exegol setup. More information on the dedicated documentation page My-Resources.

This volume is accessible from the host at ~/.exegol/my-resources/ and from the containers (if the feature was left enabled at the container creation) at /opt/my-resources.

To facilitate its use, a read/write access system shared (between the host user and the container root user) has been implemented.

Hint

To allow this permissions sharing, the “my-resources” folder (and all subdirectories) must have the Set-GID permission bit set.
This is done automatically by the wrapper if the current user has sufficient rights.
Otherwise, the wrapper will display a sudo command to be executed manually to update the relevant permissions.

The host path of this volume can be changed from the configuration file ~/.exegol/config.yml.

Warning

	Be careful not to use a folder with existing data, in which case their permissions will be automatically modified to enable access sharing.

	This change will not be applied to already existing exegol containers.

Local builds

When installing Exegol, while downloading the pre-built and compressed Docker images from Dockerhub is advised, users can build their own images locally. The wrapper has a local build feature to create and manage local exegol images.

The exegol install command can be used for that purpose. The user must specify an image name that does not match one of the remote images available from dockerhub. The wrapper will suggest to build a local image with this name. If the user chooses to build an image locally, he will then have to choose a build profile among those available. The build profile is merely the dockerfile to follow during the build process. An arbitrary dockerfile can be added in /path/to/Exegol/exegol-docker-build/name.dockerfile.

Tip

	the -v parameter can be added to have more details about the build process.

	the detailed logs of the docker build process can also be saved in a file with the --build-log parameter.

 Tools list

Tools list

Click here to see the lists of tools featured in the latest nightly images.

Error

[August 5th, 2023] - The lists descriptions were mostly AI-generated for this first version of the tools list in order to get the list shipped quickly. Many descriptions are wrong and will be fixed very soon.

Releases

Hint

The lists featured here are automatically generated. Exegol features CI/CD pipelines that build the images. At build, most tools are tested. If at least one test fails, the image doesn’t get published.

	Image tag

	Version

	Arch

	Build date

	Tools list

	nightly

	af1927b7

	arm64

	2024-05-13T18:13:00Z

	nightly_af1927b7_arm64.csv

	nightly

	af1927b7

	amd64

	2024-05-13T18:09:28Z

	nightly_af1927b7_amd64.csv

AMD64ARM64

	Image tag

	Version

	Build date

	Tools list

	ad

	3.1.4

	2024-05-05T22:35:39Z

	ad_3.1.4_amd64.csv

	web

	3.1.4

	2024-05-05T22:26:58Z

	web_3.1.4_amd64.csv

	full

	3.1.4

	2024-05-05T22:17:31Z

	full_3.1.4_amd64.csv

	light

	3.1.4

	2024-05-04T21:15:16Z

	light_3.1.4_amd64.csv

	osint

	3.1.4

	2024-05-04T20:58:48Z

	osint_3.1.4_amd64.csv

	full

	3.1.3

	2024-04-14T13:29:00Z

	full_3.1.3_amd64.csv

	ad

	3.1.3

	2024-04-14T10:34:36Z

	ad_3.1.3_amd64.csv

	web

	3.1.3

	2024-04-14T10:43:47Z

	web_3.1.3_amd64.csv

	osint

	3.1.3

	2024-04-14T10:46:46Z

	osint_3.1.3_amd64.csv

	light

	3.1.3

	2024-04-14T08:47:32Z

	light_3.1.3_amd64.csv

	full

	3.1.2

	2023-12-22T12:04:26Z

	full_3.1.2_amd64.csv

	ad

	3.1.2

	2023-12-22T11:41:22Z

	ad_3.1.2_amd64.csv

	web

	3.1.2

	2023-12-22T11:46:29Z

	web_3.1.2_amd64.csv

	light

	3.1.2

	2023-12-22T00:08:53Z

	light_3.1.2_amd64.csv

	osint

	3.1.2

	2023-12-22T00:02:50Z

	osint_3.1.2_amd64.csv

	full

	3.1.1

	2023-08-18T01:36:37Z

	full_3.1.1_amd64.csv

	ad

	3.1.1

	2023-08-18T02:59:03Z

	ad_3.1.1_amd64.csv

	web

	3.1.1

	2023-08-18T01:35:14Z

	web_3.1.1_amd64.csv

	osint

	3.1.1

	2023-08-18T01:34:47Z

	osint_3.1.1_amd64.csv

	light

	3.1.1

	2023-08-18T01:35:00Z

	light_3.1.1_amd64.csv

	full

	3.1.0

	2023-08-09T22:27:20Z

	full_3.1.0_amd64.csv

	ad

	3.1.0

	2023-08-10T00:33:47Z

	ad_3.1.0_amd64.csv

	web

	3.1.0

	2023-08-09T11:12:12Z

	web_3.1.0_amd64.csv

	osint

	3.1.0

	2023-08-09T10:50:11Z

	osint_3.1.0_amd64.csv

	light

	3.1.0

	2023-08-09T02:53:53Z

	light_3.1.0_amd64.csv

	Image tag

	Version

	Build date

	Tools list

	ad

	3.1.4

	2024-05-05T22:24:12Z

	ad_3.1.4_arm64.csv

	web

	3.1.4

	2024-05-05T21:43:14Z

	web_3.1.4_arm64.csv

	full

	3.1.4

	2024-05-05T21:38:02Z

	full_3.1.4_arm64.csv

	osint

	3.1.4

	2024-05-05T00:29:32Z

	osint_3.1.4_arm64.csv

	light

	3.1.4

	2024-05-05T00:27:18Z

	light_3.1.4_arm64.csv

	full

	3.1.3

	2024-04-14T14:16:19Z

	full_3.1.3_arm64.csv

	ad

	3.1.3

	2024-04-14T11:47:33Z

	ad_3.1.3_arm64.csv

	web

	3.1.3

	2024-04-14T11:52:28Z

	web_3.1.3_arm64.csv

	osint

	3.1.3

	2024-04-14T11:55:04Z

	osint_3.1.3_arm64.csv

	light

	3.1.3

	2024-04-14T08:38:48Z

	light_3.1.3_arm64.csv

	full

	3.1.2

	2023-12-22T12:20:18Z

	full_3.1.2_arm64.csv

	ad

	3.1.2

	2023-12-22T12:03:46Z

	ad_3.1.2_arm64.csv

	web

	3.1.2

	2023-12-22T12:08:45Z

	web_3.1.2_arm64.csv

	light

	3.1.2

	2023-12-22T00:48:17Z

	light_3.1.2_arm64.csv

	osint

	3.1.2

	2023-12-22T00:43:53Z

	osint_3.1.2_arm64.csv

	full

	3.1.1

	2023-08-18T01:36:23Z

	full_3.1.1_arm64.csv

	ad

	3.1.1

	2023-08-18T02:58:49Z

	ad_3.1.1_arm64.csv

	web

	3.1.1

	2023-08-18T01:08:44Z

	web_3.1.1_arm64.csv

	osint

	3.1.1

	2023-08-18T01:04:50Z

	osint_3.1.1_arm64.csv

	light

	3.1.1

	2023-08-18T01:05:12Z

	light_3.1.1_arm64.csv

	full

	3.1.0

	2023-08-09T09:12:21Z

	full_3.1.0_arm64.csv

	ad

	3.1.0

	2023-08-10T00:11:36Z

	ad_3.1.0_arm64.csv

	web

	3.1.0

	2023-08-09T11:11:33Z

	web_3.1.0_arm64.csv

	osint

	3.1.0

	2023-08-09T10:48:56Z

	osint_3.1.0_arm64.csv

	light

	3.1.0

	2023-08-09T01:50:40Z

	light_3.1.0_arm64.csv

Latest nightly

Below is the list of tools featured in the latest nightly (AMD64) image.

	Tool

	Link

	Description

	abuseACL

	https://github.com/AetherBlack/abuseACL

	A python script to automatically list vulnerable Windows ACEs/ACLs.

	aclpwn

	https://github.com/aas-n/aclpwn.py

	Tool for testing the security of Active Directory access controls.

	adidnsdump

	https://github.com/dirkjanm/adidnsdump

	Active Directory Integrated DNS dump utility

	aircrack-ng

	https://www.aircrack-ng.org

	A suite of tools for wireless penetration testing

	amass

	https://github.com/OWASP/Amass

	A DNS enumeration / attack surface mapping & external assets discovery tool

	amber

	https://github.com/EgeBalci/amber

	Forensic tool to recover browser history / cookies and credentials

	androguard

	https://github.com/androguard/androguard

	Reverse engineering and analysis of Android applications

	android-tools-adb

	https://developer.android.com/studio/command-line/adb

	A collection of tools for debugging Android applications

	anew

	https://github.com/tomnomnom/anew

	A simple tool for filtering and manipulating text data / such as log files and other outputs.

	angr

	https://github.com/angr/angr

	a platform-agnostic binary analysis framework

	apksigner

	https://source.android.com/security/apksigning

	arguably the most important step to optimize your APK file

	apktool

	https://github.com/iBotPeaches/Apktool

	It is a tool for reverse engineering 3rd party / closed / binary Android apps.

	arjun

	https://github.com/s0md3v/Arjun

	HTTP parameter discovery suite.

	arsenal

	https://github.com/Orange-Cyberdefense/arsenal

	Powerful weapons for penetration testing.

	asdf

	https://github.com/asdf-vm/asdf

	Extendable version manager with support for ruby python go etc

	asrepcatcher

	https://github.com/Yaxxine7/ASRepCatcher

	Make your VLAN ASREProastable.

	assetfinder

	https://github.com/tomnomnom/assetfinder

	Tool to find subdomains and IP addresses associated with a domain.

	autoconf

	https://www.gnu.org/software/autoconf/autoconf.html

	Tool for producing shell scripts to configure source code packages

	autorecon

	https://github.com/Tib3rius/AutoRecon

	Multi-threaded network reconnaissance tool which performs automated enumeration of services.

	avrdude

	https://github.com/avrdudes/avrdude

	AVRDUDE is a command-line program that allows you to download/upload/manipulate the ROM and EEPROM contents of AVR microcontrollers using the in-system programming technique (ISP).

	awscli

	https://aws.amazon.com/cli/

	Command-line interface for Amazon Web Services.

	azure-cli

	https://github.com/Azure/azure-cli

	A great cloud needs great tools; we’re excited to introduce Azure CLI our next generation multi-platform command line experience for Azure.

	bettercap

	https://github.com/bettercap/bettercap

	The Swiss Army knife for 802.11 / BLE / and Ethernet networks reconnaissance and MITM attacks.

	binwalk

	https://github.com/ReFirmLabs/binwalk

	Binwalk is a tool for analyzing / reverse engineering / and extracting firmware images.

	Blackbird

	https://github.com/p1ngul1n0/blackbird

	An OSINT tool to search fast for accounts by username across 581 sites.

	bloodhound

	https://github.com/BloodHoundAD/BloodHound

	Active Directory security tool for reconnaissance and attacking AD environments.

	BloodHound-CE

	https://github.com/SpecterOps/BloodHound

	Active Directory security tool for reconnaissance and attacking AD environments (Community Edition)

	bloodhound-ce.py

	https://github.com/fox-it/BloodHound.py

	BloodHound-CE ingestor in Python.

	bloodhound-import

	https://github.com/fox-it/BloodHound.py

	Import data into BloodHound for analyzing active directory trust relationships

	bloodhound-quickwin

	https://github.com/kaluche/bloodhound-quickwin

	A tool for BloodHounding on Windows machines without .NET or Powershell installed

	bloodhound.py

	https://github.com/fox-it/BloodHound.py

	BloodHound ingestor in Python.

	bloodyAD

	https://github.com/CravateRouge/bloodyAD

	bloodyAD is an Active Directory privilege escalation swiss army knife.

	bolt

	https://github.com/s0md3v/bolt

	Bolt crawls the target website to the specified depth and stores all the HTML forms found in a database for further processing.

	bqm

	https://github.com/Acceis/bqm

	Tool to deduplicate custom BloudHound queries from different datasets and merge them in one file.

	brakeman

	https://github.com/presidentbeef/brakeman

	Static analysis tool for Ruby on Rails applications

	bruteforce-luks

	https://github.com/glv2/bruteforce-luks

	A tool to help recover encrypted LUKS2 containers

	bully

	https://github.com/aanarchyy/bully

	bully is a tool for brute-forcing WPS (Wireless Protected Setup) PINs.

	burpsuite

	https://portswigger.net/burp

	Web application security testing tool.

	buster

	https://github.com/sham00n/Buster

	Advanced OSINT tool

	byp4xx

	https://github.com/lobuhi/byp4xx

	A Swiss Army knife for bypassing web application firewalls and filters.

	carbon14

	https://github.com/Lazza/carbon14

	OSINT tool for estimating when a web page was written.

	Censys

	https://github.com/censys/censys-python

	An easy-to-use and lightweight API wrapper for Censys APIs

	certipy

	https://github.com/ly4k/Certipy

	Python tool to create and sign certificates

	certsync

	https://github.com/zblurx/certsync

	certsync is a tool that helps you synchronize certificates between two directories.

	cewl

	https://digi.ninja/projects/cewl.php

	Generates custom wordlists by spidering a target’s website and parsing the results

	cewler

	https://github.com/roys/cewler

	CeWL alternative in Python

	chainsaw

	https://github.com/WithSecureLabs/chainsaw

	Rapidly Search and Hunt through Windows Forensic Artefacts

	checksec-py

	https://github.com/Wenzel/checksec.py

	Python wrapper script for checksec.sh from paX.

	chisel

	https://github.com/jpillora/chisel

	Go based TCP tunnel with authentication and encryption support

	cloudfail

	https://github.com/m0rtem/CloudFail

	a reconnaissance tool for identifying misconfigured CloudFront domains.

	cloudmapper

	https://github.com/duo-labs/cloudmapper

	CloudMapper helps you analyze your Amazon Web Services (AWS) environments.

	cloudsplaining

	https://github.com/salesforce/cloudsplaining

	AWS IAM Security Assessment tool that identifies violations of least privilege and generates a risk-prioritized report.

	cloudsploit

	https://github.com/aquasecurity/cloudsploit

	Cloud Security Posture Management

	clusterd

	https://github.com/hatRiot/clusterd

	A tool to distribute and remotely manage Hacking Team’s RCS agents.

	cmsmap

	https://github.com/Dionach/CMSmap

	Tool for security audit of web content management systems.

	coercer

	https://github.com/p0dalirius/coercer

	DFS-R target coercion tool

	constellation

	https://github.com/constellation-app/Constellation

	Find and exploit vulnerabilities in mobile applications.

	corscanner

	https://github.com/chenjj/CORScanner

	a Python script for finding CORS misconfigurations.

	cowpatty

	https://github.com/joswr1ght/cowpatty

	cowpatty is a tool for offline dictionary attacks against WPA-PSK (Pre-Shared Key) networks.

	crackhound

	https://github.com/trustedsec/crackhound

	A fast WPA/WPA2/WPA3 WiFi Handshake capture / password recovery and analysis tool

	crackmapexec

	https://github.com/Porchetta-Industries/CrackMapExec

	Network scanner.

	creds

	https://github.com/ihebski/DefaultCreds-cheat-sheet

	One place for all the default credentials to assist pentesters during an engagement. This document has several products default login/password gathered from multiple sources.

	crunch

	https://github.com/crunchsec/crunch

	A wordlist generator where you can specify a standard character set or a character set you specify.

	cupp

	https://github.com/Mebus/cupp

	Cupp is a tool used to generate personalized password lists based on target information.

	CyberChef

	https://github.com/gchq/CyberChef/

	The Cyber Swiss Army Knife

	cyperoth

	https://github.com/seajaysec/cypheroth

	Automated extensible toolset that runs cypher queries against Bloodhound’s Neo4j backend and saves output to spreadsheets.

	darkarmour

	https://github.com/bats3c/darkarmour

	a tool to detect and evade common antivirus products

	dex2jar

	https://github.com/pxb1988/dex2jar

	A tool to convert Android’s dex files to Java’s jar files

	dfscoerce

	https://github.com/Wh04m1001/dfscoerce

	DFS-R target coercion tool

	dirb

	https://github.com/v0re/dirb

	Web Content Scanner

	dirsearch

	https://github.com/maurosoria/dirsearch

	Tool for searching files and directories on a web site.

	divideandscan

	https://github.com/snovvcrash/divideandscan

	Advanced subdomain scanner

	dns2tcp

	https://github.com/alex-sector/dns2tcp

	dns2tcp is a tool for relaying TCP connections over DNS.

	dnschef

	https://github.com/iphelix/dnschef

	Tool for DNS MITM attacks

	dnsenum

	https://github.com/fwaeytens/dnsenum

	dnsenum is a tool for enumerating DNS information about a domain.

	dnsx

	https://github.com/projectdiscovery/dnsx

	A tool for DNS reconnaissance that can help identify subdomains and other related domains.

	donpapi

	https://github.com/login-securite/DonPAPI

	Dumping revelant information on compromised targets without AV detection

	dploot

	https://github.com/zblurx/dploot

	dploot is Python rewrite of SharpDPAPI written un C#.

	droopescan

	https://github.com/droope/droopescan

	Scan Drupal websites for vulnerabilities.

	drupwn

	https://github.com/immunIT/drupwn

	Drupal security scanner.

	eaphammer

	https://github.com/s0lst1c3/eaphammer

	EAPHammer is a toolkit for performing targeted evil twin attacks against WPA2-Enterprise networks.

	empire

	https://github.com/BC-SECURITY/Empire

	post-exploitation and adversary emulation framework

	enum4linux-ng

	https://github.com/cddmp/enum4linux-ng

	Tool for enumerating information from Windows and Samba systems.

	enyx

	https://github.com/trickster0/enyx

	Framework for building offensive security tools.

	evilwinrm

	https://github.com/Hackplayers/evil-winrm

	Tool to connect to a remote Windows system with WinRM.

	exif

	https://exiftool.org/

	Utility to read / write and edit metadata in image / audio and video files

	exifprobe

	https://github.com/hfiguiere/exifprobe

	Exifprobe is a command-line tool to parse EXIF data from image files.

	exiftool

	https://github.com/exiftool/exiftool

	ExifTool is a Perl library and command-line tool for reading / writing and editing meta information in image / audio and video files.

	exiv2

	https://github.com/Exiv2/exiv2

	Image metadata library and toolset

	ExtractBitlockerKeys

	https://github.com/p0dalirius/ExtractBitlockerKeys

	A system administration or post-exploitation script to automatically extract the bitlocker recovery keys from a domain.

	eyewitness

	https://github.com/FortyNorthSecurity/EyeWitness

	a tool to take screenshots of websites / provide some server header info / and identify default credentials if possible.

	fcrackzip

	https://github.com/hyc/fcrackzip

	Password cracker for zip archives.

	fdisk

	https://github.com/karelzak/util-linux

	Collection of basic system utilities / including fdisk partitioning tool

	feroxbuster

	https://github.com/epi052/feroxbuster

	Simple / fast and recursive content discovery tool

	ffuf

	https://github.com/ffuf/ffuf

	Fast web fuzzer written in Go.

	fierce

	https://github.com/mschwager/fierce

	A DNS reconnaissance tool for locating non-contiguous IP space

	finalrecon

	https://github.com/thewhiteh4t/FinalRecon

	A web reconnaissance tool that gathers information about web pages

	findomain

	https://github.com/findomain/findomain

	The fastest and cross-platform subdomain enumerator.

	finduncommonshares

	https://github.com/p0dalirius/FindUncommonShares

	Script that can help identify shares that are not commonly found on a Windows system.

	firefox

	https://www.mozilla.org

	A web browser

	foremost

	https://doc.ubuntu-fr.org/foremost

	Foremost is a forensic tool for recovering files based on their headers / footers / and internal data structures.

	freeipscanner

	https://github.com/scrt/freeipscanner

	A simple bash script to enumerate stale ADIDNS entries

	freerdp2-x11

	https://github.com/FreeRDP/FreeRDP

	FreeRDP is a free implementation of the Remote Desktop Protocol (RDP) released under the Apache license.

	frida

	https://github.com/frida/frida

	Dynamic instrumentation toolkit

	fuxploider

	https://github.com/almandin/fuxploider

	a Python tool for finding and exploiting file upload forms/directories.

	fzf

	https://github.com/junegunn/fzf

	🌸 A command-line fuzzy finder

	gau

	https://github.com/lc/gau

	Fast tool for fetching URLs

	genusernames

	https://gitlab.com/-/snippets/2480505/raw/main/bash

	GenUsername is a Python tool for generating a list of usernames based on a name or email address.

	GeoPincer

	https://github.com/tloja/GeoPincer

	GeoPincer is a script that leverages OpenStreetMap’s Overpass API in order to search for locations.

	geowordlists

	https://github.com/p0dalirius/GeoWordlists

	tool to generate wordlists of passwords containing cities at a defined distance around the client city.

	gf

	https://github.com/tomnomnom/gf

	A wrapper around grep to avoid typing common patterns

	ghidra

	https://github.com/NationalSecurityAgency/ghidra

	Software reverse engineering suite of tools.

	git-dumper

	https://github.com/arthaud/git-dumper

	Small script to dump a Git repository from a website.

	githubemail

	https://github.com/paulirish/github-email

	a command-line tool to retrieve a user’s email from Github.

	gittools

	https://github.com/internetwache/GitTools

	A collection of Git tools including a powerful Dumper for dumping Git repositories.

	gmsadumper

	https://github.com/micahvandeusen/gMSADumper

	A tool for extracting credentials and other information from a Microsoft Active Directory domain.

	gobuster

	https://github.com/OJ/gobuster

	Tool to discover hidden files and directories.

	goldencopy

	https://github.com/Dramelac/GoldenCopy

	Copy the properties and groups of a user from neo4j (bloodhound) to create an identical golden ticket

	GoMapEnum

	https://github.com/nodauf/GoMapEnum

	Nothing new but existing techniques are brought together in one tool.

	gopherus

	https://github.com/tarunkant/Gopherus

	Gopherus is a simple command line tool for exploiting vulnerable Gopher servers.

	gosecretsdump

	https://github.com/c-sto/gosecretsdump

	Implements NTLMSSP network authentication protocol in Go

	goshs

	https://github.com/patrickhener/goshs

	Goshs is a replacement for Python’s SimpleHTTPServer. It allows uploading and downloading via HTTP/S with either self-signed certificate or user provided certificate and you can use HTTP basic auth.

	gowitness

	https://github.com/sensepost/gowitness

	A website screenshot utility written in Golang.

	GPOddity

	https://github.com/synacktiv/GPOddity

	Aiming at automating GPO attack vectors through NTLM relaying (and more)

	gpp-decrypt

	https://github.com/t0thkr1s/gpp-decrypt

	A tool to decrypt Group Policy Preferences passwords

	gqrx

	https://github.com/csete/gqrx

	Software defined radio receiver powered by GNU Radio and Qt

	gron

	https://github.com/tomnomnom/gron

	Make JSON greppable!

	h2csmuggler

	https://github.com/BishopFox/h2csmuggler

	HTTP Request Smuggling tool using H2C upgrade

	h8mail

	https://github.com/khast3x/h8mail

	Email OSINT and breach hunting.

	hackrf

	https://github.com/mossmann/hackrf

	Low cost software defined radio platform

	haiti

	https://github.com/noraj/haiti

	haiti is a A CLI tool (and library) to identify hash types (hash type identifier).

	hakrawler

	https://github.com/hakluke/hakrawler

	a fast web crawler for gathering URLs and other information from websites

	hakrevdns

	https://github.com/hakluke/hakrevdns

	Reverse DNS lookup utility that can help with discovering subdomains and other information.

	hashcat

	https://hashcat.net/hashcat

	A tool for advanced password recovery

	hashonymize

	https://github.com/ShutdownRepo/hashonymize

	This small tool is aimed at anonymizing hashes files for offline but online cracking like Google Collab for instance (see https://github.com/ShutdownRepo/google-colab-hashcat).

	Havoc

	https://github.com/HavocFramework/Havoc

	Command & Control Framework

	hcxdumptool

	https://github.com/ZerBea/hcxdumptool

	Small tool to capture packets from wlan devices.

	hcxtools

	https://github.com/ZerBea/hcxtools

	Tools for capturing and analyzing packets from WLAN devices.

	hexedit

	https://github.com/pixel/hexedit

	View and edit binary files

	holehe

	https://github.com/megadose/holehe

	mail osint tool finding out if it is used on websites.

	hping3

	https://github.com/antirez/hping

	A network tool able to send custom TCP/IP packets

	httpmethods

	https://github.com/ShutdownRepo/httpmethods

	Tool for exploiting HTTP methods (e.g. PUT / DELETE / etc.)

	httprobe

	https://github.com/tomnomnom/httprobe

	A simple utility for enumerating HTTP and HTTPS servers.

	httpx

	https://github.com/projectdiscovery/httpx

	A tool for identifying web technologies and vulnerabilities / including outdated software versions and weak encryption protocols.

	hydra

	https://github.com/vanhauser-thc/thc-hydra

	Hydra is a parallelized login cracker which supports numerous protocols to attack.

	ida

	https://www.hex-rays.com/products/ida/

	Interactive disassembler for software analysis.

	ignorant

	https://github.com/megadose/ignorant

	holehe but for phone numbers.

	imagemagick

	https://github.com/ImageMagick/ImageMagick

	ImageMagick is a free and open-source image manipulation tool used to create / edit / compose / or convert bitmap images.

	impacket

	https://github.com/ThePorgs/impacket

	Set of tools for working with network protocols (ThePorgs version).

	ipinfo

	https://github.com/ipinfo/cli

	Get information about an IP address or hostname.

	iptables

	https://linux.die.net/man/8/iptables

	Userspace command line tool for configuring kernel firewall

	jackit

	https://github.com/insecurityofthings/jackit

	Exploit to take over a wireless mouse and keyboard

	jadx

	https://github.com/skylot/jadx

	Java decompiler

	jd-gui

	https://github.com/java-decompiler/jd-gui

	A standalone Java Decompiler GUI

	jdwp

	https://github.com/IOActive/jdwp-shellifier

	This exploitation script is meant to be used by pentesters against active JDWP service / in order to gain Remote Code Execution.

	john

	https://github.com/openwall/john

	John the Ripper password cracker.

	joomscan

	https://github.com/rezasp/joomscan

	A tool to enumerate Joomla-based websites

	jwt

	https://github.com/ticarpi/jwt_tool

	a command-line tool for working with JSON Web Tokens (JWTs)

	kadimus

	https://github.com/P0cL4bs/Kadimus

	a tool for detecting and exploiting file upload vulnerabilities

	KeePwn

	https://github.com/Orange-Cyberdefense/KeePwn

	KeePwn is a tool that extracts passwords from KeePass 1.x and 2.x databases.

	kerbrute

	https://github.com/ropnop/kerbrute

	A tool to perform Kerberos pre-auth bruteforcing

	kiterunner

	https://github.com/assetnote/kiterunner

	Tool for operating Active Directory environments.

	Kraken

	https://github.com/kraken-ng/Kraken

	Kraken is a modular multi-language webshell focused on web post-exploitation and defense evasion. It supports three technologies (PHP / JSP and ASPX) and is core is developed in Python.

	krbjack

	https://github.com/almandin/krbjack

	A Kerberos AP-REQ hijacking tool with DNS unsecure updates abuse.

	krbrelayx

	https://github.com/dirkjanm/krbrelayx

	a tool for performing Kerberos relay attacks

	kubectl

	https://kubernetes.io/docs/reference/kubectl/overview/

	Command-line interface for managing Kubernetes clusters.

	ldapdomaindump

	https://github.com/dirkjanm/ldapdomaindump

	A tool for dumping domain data from an LDAP service

	ldaprelayscan

	https://github.com/zyn3rgy/LdapRelayScan

	Check Domain Controllers for LDAP server protections regarding the relay of NTLM authentication.

	ldapsearch

	https://wiki.debian.org/LDAP/LDAPUtils

	Search for and display entries (ldap)

	ldapsearch-ad

	https://github.com/yaap7/ldapsearch-ad

	LDAP search utility with AD support

	LDAPWordlistHarvester

	https://github.com/p0dalirius/LDAPWordlistHarvester

	Generate a wordlist from the information present in LDAP in order to crack passwords of domain accounts

	ldeep

	https://github.com/franc-pentest/ldeep

	ldeep is a tool to discover hidden paths on Web servers.

	legba

	https://github.com/evilsocket/legba

	a multiprotocol credentials bruteforcer / password sprayer and enumerator built with Rust

	libmspack

	https://github.com/kyz/libmspack

	C library for Microsoft compression formats.

	libnfc

	https://github.com/grundid/nfctools

	Library for Near Field Communication (NFC) devices

	libnfc-crypto1-crack

	https://github.com/droidnewbie2/acr122uNFC

	Implementation of cryptographic attack on Mifare Classic RFID cards

	libusb-dev

	https://github.com/libusb/libusb

	Library for USB device access

	ligolo-ng

	https://github.com/nicocha30/ligolo-ng

	An advanced yet simple tunneling tool that uses a TUN interface.

	linkedin2username

	https://github.com/initstring/linkedin2username

	Generate a list of LinkedIn usernames from a company name.

	linkfinder

	https://github.com/GerbenJavado/LinkFinder

	a Python script that finds endpoints and their parameters in JavaScript files.

	lnkup

	https://github.com/Plazmaz/lnkUp

	This tool will allow you to generate LNK payloads. Upon rendering or being run they will exfiltrate data.

	lsassy

	https://github.com/Hackndo/lsassy

	Windows secrets and passwords extraction tool.

	ltrace

	https://github.com/dkogan/ltrace

	ltrace is a debugging program for Linux and Unix that intercepts and records dynamic library calls that are called by an executed process.

	maigret

	https://github.com/soxoj/maigret

	Collects information about a target email (or domain) from Google and Bing search results

	maltego

	https://www.paterva.com/web7/downloads.php

	A tool used for open-source intelligence and forensics

	manspider

	https://github.com/blacklanternsecurity/MANSPIDER

	Manspider will crawl every share on every target system. If provided creds don’t work it will fall back to ‘guest’ then to a null session.

	mariadb-client

	https://github.com/MariaDB/server

	MariaDB is a community-developed fork of the MySQL relational database management system. The mariadb-client package includes command-line utilities for interacting with a MariaDB server.

	masky

	https://github.com/Z4kSec/Masky

	Masky is a python library providing an alternative way to remotely dump domain users’ credentials thanks to an ADCS. A command line tool has been built on top of this library in order to easily gather PFX or NT hashes and TGT on a larger scope

	masscan

	https://github.com/robertdavidgraham/masscan

	Masscan is an Internet-scale port scanner

	mdcat

	https://github.com/swsnr/mdcat

	Fancy cat for Markdown

	metasploit

	https://github.com/rapid7/metasploit-framework

	A popular penetration testing framework that includes many exploits and payloads

	mfcuk

	https://github.com/nfc-tools/mfcuk

	Implementation of an attack on Mifare Classic and Plus RFID cards

	mfdread

	https://github.com/zhovner/mfdread

	Tool for reading/writing Mifare RFID tags

	mfoc

	https://github.com/nfc-tools/mfoc

	Implementation of ‘offline nested’ attack by Nethemba

	minicom

	https://doc.ubuntu-fr.org/minicom

	Minicom is a text-based serial communication program for Unix-like operating systems.

	mitm6

	https://github.com/fox-it/mitm6

	Tool to conduct a man-in-the-middle attack against IPv6 protocols.

	mobsf

	https://github.com/MobSF/Mobile-Security-Framework-MobSF

	Automated and all-in-one mobile application (Android/iOS/Windows) pen-testing malware analysis and security assessment framework

	moodlescan

	https://github.com/inc0d3/moodlescan

	Scan Moodle sites for information and vulnerabilities.

	mousejack

	https://github.com/BastilleResearch/mousejack

	Exploit to take over a wireless mouse and keyboard

	msprobe

	https://github.com/puzzlepeaches/msprobe

	msprobe is a tool to identify Microsoft Windows hosts and servers that are running certain services.

	MurMurHash

	https://github.com/QU35T-code/MurMurHash

	This little tool is to calculate a MurmurHash value of a favicon to hunt phishing websites on the Shodan platform.

	naabu

	https://github.com/projectdiscovery/naabu

	A fast and reliable port scanner that can detect open ports and services.

	name-that-hash

	https://github.com/HashPals/Name-That-Hash

	Online tool for identifying hashes.

	nasm

	https://github.com/netwide-assembler/nasm

	NASM is an 80x86 assembler designed for portability and modularity.

	nbtscan

	https://github.com/charlesroelli/nbtscan

	NBTscan is a program for scanning IP networks for NetBIOS name information.

	neo4j

	https://github.com/neo4j/neo4j

	Database.

	neovim

	https://neovim.io/

	hyperextensible Vim-based text editor

	netdiscover

	https://github.com/netdiscover-scanner/netdiscover

	netdiscover is an active/passive address reconnaissance tool

	netexec

	https://github.com/Pennyw0rth/NetExec

	Network scanner (Crackmapexec updated).

	nfct

	https://github.com/grundid/nfctools

	Tool for Near Field Communication (NFC) devices

	ngrok

	https://github.com/inconshreveable/ngrok

	Expose a local server behind a NAT or firewall to the internet

	nmap

	https://nmap.org

	The Network Mapper - a powerful network discovery and security auditing tool

	nmap-parse-ouptut

	https://github.com/ernw/nmap-parse-output

	Converts/manipulates/extracts data from a Nmap scan output.

	noPac

	https://github.com/Ridter/noPac

	Exploiting CVE-2021-42278 and CVE-2021-42287 to impersonate DA from standard domain user.

	nosqlmap

	https://github.com/codingo/NoSQLMap

	a Python tool for testing NoSQL databases for security vulnerabilities.

	ntlmv1-multi

	https://github.com/evilmog/ntlmv1-multi

	Exploit a vulnerability in Microsoft Windows to gain system-level access.

	ntlm_theft

	https://github.com/Greenwolf/ntlm_theft

	A tool for generating multiple types of NTLMv2 hash theft files

	nuclei

	https://github.com/projectdiscovery/nuclei

	A fast and customizable vulnerability scanner that can detect a wide range of issues / including XSS / SQL injection / and misconfigured servers.

	oaburl

	https://gist.githubusercontent.com/snovvcrash/4e76aaf2a8750922f546eed81aa51438/raw/96ec2f68a905eed4d519d9734e62edba96fd15ff/oaburl.py

	Find Open redirects and other vulnerabilities.

	objection

	https://github.com/sensepost/objection

	Runtime mobile exploration

	objectwalker

	https://github.com/p0dalirius/objectwalker

	A python module to explore the object tree to extract paths to interesting objects in memory.

	oneforall

	https://github.com/shmilylty/OneForAll

	a powerful subdomain collection tool.

	onesixtyone

	https://github.com/trailofbits/onesixtyone

	onesixtyone is an SNMP scanner which utilizes a sweep technique to achieve very high performance.

	osrframework

	https://github.com/i3visio/osrframework

	Include references to a bunch of different applications related to username checking / DNS lookups / information leaks research / deep web search / regular expressions extraction and many others.

	pass

	https://github.com/hashcat/hashcat

	TODO

	PassTheCert

	https://github.com/AlmondOffSec/PassTheCert

	PassTheCert is a tool to extract Active Directory user password hashes from a domain controller’s local certificate store.

	patator

	https://github.com/lanjelot/patator

	Login scanner.

	pcredz

	https://github.com/lgandx/PCredz

	PowerShell credential dumper

	pcsc

	https://pcsclite.apdu.fr/

	Middleware for smart card readers

	pdfcrack

	https://github.com/robins/pdfcrack

	A tool for cracking password-protected PDF files

	peepdf

	https://github.com/jesparza/peepdf

	peepdf is a Python tool to explore PDF files in order to find out if the file can be harmful or not.

	petitpotam

	https://github.com/topotam/PetitPotam

	Windows machine account manipulation

	phoneinfoga

	https://github.com/sundowndev/PhoneInfoga

	Information gathering & OSINT framework for phone numbers.

	photon

	https://github.com/s0md3v/Photon

	a fast web crawler which extracts URLs / files / intel & endpoints from a target.

	PHP filter chain generator

	https://github.com/synacktiv/php_filter_chain_generator

	A CLI to generate PHP filters chain / get your RCE without uploading a file if you control entirely the parameter passed to a require or an include in PHP!

	phpggc

	https://github.com/ambionics/phpggc

	Exploit generation tool for the PHP platform.

	pkcrack

	https://github.com/keyunluo/pkcrack

	tool to generate wordlists of passwords containing cities at a defined distance around the client city

	pkinittools

	https://github.com/dirkjanm/PKINITtools

	Pkinit support tools

	polenum

	https://github.com/Wh1t3Fox/polenum

	Polenum is a Python script which uses the Impacket library to extract user information through the SMB protocol.

	powershell

	https://github.com/PowerShell/PowerShell

	a command-line shell and scripting language designed for system administration and automation

	pp-finder

	https://github.com/yeswehack/pp-finder

	Prototype pollution finder tool for javascript. pp-finder lets you find prototype pollution candidates in your code.

	pre2k

	https://github.com/garrettfoster13/pre2k

	pre2k is a tool to check if a Windows domain has any pre-2000 Windows 2000 logon names still in use.

	pretender

	https://github.com/RedTeamPentesting/pretender

	an mitm tool for helping with relay attacks.

	prips

	https://manpages.ubuntu.com/manpages/focal/man1/prips.1.html

	A utility for quickly generating IP ranges or enumerating hosts within a specified range.

	privexchange

	https://github.com/dirkjanm/PrivExchange

	a tool to perform attacks against Microsoft Exchange server using NTLM relay techniques

	prowler

	https://github.com/prowler-cloud/prowler

	Perform Cloud Security best practices assessments / audits / incident response / compliance / continuous monitoring / hardening and forensics readiness.

	proxmark3

	https://github.com/Proxmark/proxmark3

	Open source RFID research toolkit.

	proxychains

	https://github.com/rofl0r/proxychains

	Proxy chains - redirect connections through proxy servers.

	pst-utils

	https://manpages.debian.org/jessie/pst-utils/readpst.1

	pst-utils is a set of tools for working with Outlook PST files.

	pth-tools

	https://github.com/byt3bl33d3r/pth-toolkit

	A toolkit to perform pass-the-hash attacks

	pwncat

	https://github.com/calebstewart/pwncat

	A lightweight and versatile netcat alternative that includes various additional features.

	pwndb

	https://github.com/davidtavarez/pwndb

	A command-line tool for searching the pwndb database of compromised credentials.

	pwndbg

	https://github.com/pwndbg/pwndbg

	a GDB plugin that makes debugging with GDB suck less

	pwnedornot

	https://github.com/thewhiteh4t/pwnedOrNot

	Check if a password has been leaked in a data breach.

	pwninit

	https://github.com/io12/pwninit

	A tool for automating starting binary exploit challenges

	pwntools

	https://github.com/Gallopsled/pwntools

	a CTF framework and exploit development library

	pygpoabuse

	https://github.com/Hackndo/pyGPOAbuse

	A tool for abusing GPO permissions to escalate privileges

	pykek

	https://github.com/preempt/pykek

	PyKEK (Python Kerberos Exploitation Kit) a python library to manipulate KRB5-related data.

	pylaps

	https://github.com/p0dalirius/pylaps

	Utility for enumerating and querying LDAP servers.

	pymeta

	https://github.com/m8sec/pymeta

	Google and Bing scraping osint tool

	pypykatz

	https://github.com/skelsec/pypykatz

	a Python library for mimikatz-like functionality

	pyrit

	https://github.com/JPaulMora/Pyrit

	Python-based WPA/WPA2-PSK attack tool.

	pywerview

	https://github.com/the-useless-one/pywerview

	A (partial) Python rewriting of PowerSploit’s PowerView.

	pywhisker

	https://github.com/ShutdownRepo/pywhisker

	PyWhisker is a Python equivalent of the original Whisker made by Elad Shamir and written in C#. This tool allows users to manipulate the msDS-KeyCredentialLink attribute of a target user/computer to obtain full control over that object. It’s based on Impacket and on a Python equivalent of Michael Grafnetter’s DSInternals called PyDSInternals made by podalirius.

	pywsus

	https://github.com/GoSecure/pywsus

	Python implementation of a WSUS client

	radare2

	https://github.com/radareorg/radare2

	A complete framework for reverse-engineering and analyzing binaries

	rdesktop

	https://github.com/rdesktop/rdesktop

	rdesktop is a client for Remote Desktop Protocol (RDP) used in a number of Microsoft products including Windows NT Terminal Server / Windows 2000 Server / Windows XP and Windows 2003 Server.

	reaver

	https://github.com/t6x/reaver-wps-fork-t6x

	reaver is a tool for brute-forcing WPS (Wireless Protected Setup) PINs.

	recon-ng

	https://github.com/lanmaster53/recon-ng

	External recon tool.

	recondog

	https://github.com/s0md3v/ReconDog

	a reconnaissance tool for performing information gathering on a target.

	redis-tools

	https://github.com/antirez/redis-tools

	redis-tools is a collection of Redis client utilities including redis-cli and redis-benchmark.

	remmina

	https://github.com/FreeRDP/Remmina

	Remote desktop client.

	responder

	https://github.com/lgandx/Responder

	a LLMNR / NBT-NS and MDNS poisoner.

	rlwrap

	https://github.com/hanslub42/rlwrap

	rlwrap is a small utility that wraps input and output streams of executables / making it possible to edit and re-run input history

	ROADtools

	https://github.com/dirkjanm/ROADtools

	ROADtools is a framework to interact with Azure AD. It consists of a library (roadlib) with common components / the ROADrecon Azure AD exploration tool and the ROADtools Token eXchange (roadtx) tool.

	roastinthemiddle

	https://github.com/Tw1sm/RITM

	RoastInTheMiddle is a tool to intercept and relay NTLM authentication requests.

	robotstester

	https://github.com/p0dalirius/robotstester

	Utility for testing whether a website’s robots.txt file is correctly configured.

	routersploit

	https://github.com/threat9/routersploit

	Security audit tool for routers.

	RsaCracker

	https://github.com/skyf0l/RsaCracker

	Powerful RSA cracker for CTFs. Supports RSA - X509 - OPENSSH in PEM and DER formats.

	rsactftool

	https://github.com/RsaCtfTool/RsaCtfTool

	The rsactftool tool is used for RSA cryptographic operations and analysis.

	rsync

	https://packages.debian.org/sid/rsync

	File synchronization tool for efficiently copying and updating data between local or remote locations

	rtl-433

	https://github.com/merbanan/rtl_433

	Tool for decoding various wireless protocols/ signals such as those used by weather stations

	ruler

	https://github.com/sensepost/ruler

	Outlook Rules exploitation framework.

	rusthound (v2)

	https://github.com/OPENCYBER-FR/RustHound

	BloodHound-CE ingestor in Rust.

	rusthound

	https://github.com/OPENCYBER-FR/RustHound

	BloodHound ingestor in Rust.

	rustscan

	https://github.com/RustScan/RustScan

	The Modern Port Scanner

	samdump2

	https://github.com/azan121468/SAMdump2

	A tool to dump Windows NT/2k/XP/Vista password hashes from SAM files

	sccmhunter

	https://github.com/garrettfoster13/sccmhunter

	SCCMHunter is a post-ex tool built to streamline identifying profiling and attacking SCCM related assets in an Active Directory domain.

	sccmwtf

	https://github.com/xpn/sccmwtf

	This code is designed for exploring SCCM in a lab.

	scout

	https://github.com/nccgroup/ScoutSuite

	Scout Suite is an open source multi-cloud security-auditing tool which enables security posture assessment of cloud environments.

	scrcpy

	https://github.com/Genymobile/scrcpy

	Display and control your Android device.

	searchsploit

	https://gitlab.com/exploit-database/exploitdb

	A command line search tool for Exploit-DB

	seclists

	https://github.com/danielmiessler/SecLists

	A collection of multiple types of lists used during security assessments

	semgrep

	https://github.com/returntocorp/semgrep/

	Static analysis tool that supports multiple languages and can find a variety of vulnerabilities and coding errors.

	shadowcoerce

	https://github.com/ShutdownRepo/shadowcoerce

	Utility for bypassing the Windows Defender antivirus by hiding a process within a legitimate process.

	shellerator

	https://github.com/ShutdownRepo/Shellerator

	a simple command-line tool for generating shellcode

	Sherlock

	https://github.com/sherlock-project/sherlock

	Hunt down social media accounts by username across social networks.

	shuffledns

	https://github.com/projectdiscovery/shuffledns

	A fast and customizable DNS resolver that can be used for subdomain enumeration and other tasks.

	simplyemail

	https://github.com/SimplySecurity/SimplyEmail

	a scriptable command line tool for sending emails

	sipvicious

	https://github.com/enablesecurity/sipvicious

	Enumeration and MITM tool for SIP devices

	sleuthkit

	https://github.com/sleuthkit/sleuthkit

	Forensic toolkit to analyze volume and file system data

	sliver

	https://github.com/BishopFox/sliver

	Open source / cross-platform and extensible C2 framework

	smali

	https://github.com/JesusFreke/smali

	A tool to disassemble and assemble Android’s dex files

	smartbrute

	https://github.com/ShutdownRepo/SmartBrute

	The smart password spraying and bruteforcing tool for Active Directory Domain Services.

	smbclient

	https://github.com/samba-team/samba

	SMBclient is a command-line utility that allows you to access Windows shared resources

	smbmap

	https://github.com/ShawnDEvans/smbmap

	A tool to enumerate SMB shares and check for null sessions

	smtp-user-enum

	https://github.com/pentestmonkey/smtp-user-enum

	A tool to enumerate email addresses via SMTP

	smuggler

	https://github.com/defparam/smuggler

	Smuggler is a tool that helps pentesters and red teamers to smuggle data into and out of the network even when there are multiple layers of security in place.

	SoapUI

	https://github.com/SmartBear/soapui

	SoapUI is the world’s leading testing tool for API testing.

	spiderfoot

	https://github.com/smicallef/spiderfoot

	A reconnaissance tool that automatically queries over 100 public data sources

	sprayhound

	https://github.com/Hackndo/Sprayhound

	Active Directory password audit tool.

	sqlmap

	https://github.com/sqlmapproject/sqlmap

	Sqlmap is an open-source penetration testing tool that automates the process of detecting and exploiting SQL injection flaws

	ssh-audit

	https://github.com/jtesta/ssh-audit

	ssh-audit is a tool to test SSH server configuration for best practices.

	sshuttle

	https://github.com/sshuttle/sshuttle

	Transparent proxy server that tunnels traffic through an SSH server

	sslscan

	https://github.com/rbsec/sslscan

	a tool for testing SSL/TLS encryption on servers

	ssrfmap

	https://github.com/swisskyrepo/SSRFmap

	a tool for testing SSRF vulnerabilities.

	steghide

	https://github.com/StefanoDeVuono/steghide

	steghide is a steganography program that is able to hide data in various kinds of image and audio files.

	stegolsb

	https://github.com/KyTn/STEGOLSB

	Steganography tool to hide data in BMP images using least significant bit algorithm

	stegosuite

	https://github.com/osde8info/stegosuite

	Stegosuite is a free steganography tool that allows you to hide data in image and audio files.

	strace

	https://github.com/strace/strace

	strace is a debugging utility for Linux that allows you to monitor and diagnose system calls made by a process.

	subfinder

	https://github.com/projectdiscovery/subfinder

	Tool to find subdomains associated with a domain.

	sublist3r

	https://github.com/aboul3la/Sublist3r

	a Python tool designed to enumerate subdomains of websites.

	swaks

	https://github.com/jetmore/swaks

	Swaks is a featureful flexible scriptable transaction-oriented SMTP test tool.

	symfony-exploits

	https://github.com/ambionics/symfony-exploits

	Collection of Symfony exploits and PoCs.

	tailscale

	https://github.com/tailscale/tailscale

	A secure and easy-to-use VPN alternative that is designed for teams and businesses.

	targetedKerberoast

	https://github.com/ShutdownRepo/targetedKerberoast

	Kerberoasting against specific accounts

	tcpdump

	https://github.com/the-tcpdump-group/tcpdump

	a powerful command-line packet analyzer for Unix-like systems

	TeamsPhisher

	https://github.com/Octoberfest7/TeamsPhisher

	TeamsPhisher is a Python3 program that facilitates the delivery of phishing messages and attachments to Microsoft Teams users whose organizations allow external communications.

	testdisk

	https://github.com/cgsecurity/testdisk

	Partition recovery and file undelete utility

	testssl

	https://github.com/drwetter/testssl.sh

	a tool for testing SSL/TLS encryption on servers

	theharvester

	https://github.com/laramies/theHarvester

	Tool for gathering e-mail accounts / subdomain names / virtual host / open ports / banners / and employee names from different public sources

	tig

	https://github.com/jonas/tig

	Tig is an ncurses-based text-mode interface for git.

	timing

	https://github.com/ffleming/timing_attack

	Tool to generate a timing profile for a given command.

	tls-map

	https://github.com/sec-it/tls-map

	tls-map is a library for mapping TLS cipher algorithm names.

	tls-scanner

	https://github.com/tls-attacker/tls-scanner

	a simple script to check the security of a remote TLS/SSL web server

	tomcatwardeployer

	https://github.com/mgeeky/tomcatwardeployer

	Script to deploy war file in Tomcat.

	tor

	https://github.com/torproject/tor

	Anonymity tool that can help protect your privacy and online identity by routing your traffic through a network of servers.

	toutatis

	https://github.com/megadose/Toutatis

	Toutatis is a tool that allows you to extract information from instagrams accounts such as e-mails / phone numbers and more.

	traceroute

	https://github.com/iputils/iputils

	Traceroute is a command which can show you the path a packet of information takes from your computer to one you specify.

	trevorspray

	https://github.com/blacklanternsecurity/TREVORspray

	TREVORspray is a modular password sprayer with threading SSH proxying loot modules / and more

	trid

	https://mark0.net/soft-trid-e.html

	File identifier

	trilium

	https://github.com/zadam/trilium

	Personal knowledge management system.

	tshark

	https://github.com/wireshark/wireshark

	TShark is a terminal version of Wireshark.

	uberfile

	https://github.com/ShutdownRepo/Uberfile

	Uberfile is a simple command-line tool aimed to help pentesters quickly generate file downloader one-liners in multiple contexts (wget / curl / powershell / certutil…). This project code is based on my other similar project for one-liner reverseshell generation Shellerator.

	updog

	https://github.com/sc0tfree/updog

	Simple replacement for Python’s SimpleHTTPServer.

	upx

	https://github.com/upx/upx

	UPX is an advanced executable packer

	username-anarchy

	https://github.com/urbanadventurer/username-anarchy

	Tools for generating usernames when penetration testing. Usernames are half the password brute force problem.

	Villain

	https://github.com/t3l3machus/Villain

	Command & Control Framework

	volatility2

	https://github.com/volatilityfoundation/volatility

	Volatile memory extraction utility framework

	volatility3

	https://github.com/volatilityfoundation/volatility3

	Advanced memory forensics framework

	wabt

	https://github.com/WebAssembly/wabt

	The WebAssembly Binary Toolkit (WABT) is a suite of tools for WebAssembly (Wasm) including assembler and disassembler / a syntax checker / and a binary format validator.

	wafw00f

	https://github.com/EnableSecurity/wafw00f

	a Python tool that helps to identify and fingerprint web application firewall (WAF) products.

	waybackurls

	https://github.com/tomnomnom/waybackurls

	Fetch all the URLs that the Wayback Machine knows about for a domain.

	webclientservicescanner

	https://github.com/Hackndo/webclientservicescanner

	Scans for web service endpoints

	weevely

	https://github.com/epinna/weevely3

	a webshell designed for post-exploitation purposes that can be extended over the network at runtime.

	wfuzz

	https://github.com/xmendez/wfuzz

	WFuzz is a web application vulnerability scanner that allows you to find vulnerabilities using a wide range of attack payloads and fuzzing techniques

	whatportis

	https://github.com/ncrocfer/whatportis

	Command-line tool to lookup port information

	whatweb

	https://github.com/urbanadventurer/WhatWeb

	Next generation web scanner that identifies what websites are running.

	whois

	https://packages.debian.org/sid/whois

	See information about a specific domain name or IP address.

	wifite2

	https://github.com/derv82/wifite2

	Script for auditing wireless networks.

	windapsearch-go

	https://github.com/ropnop/go-windapsearch/

	Active Directory enumeration tool.

	wireshark

	https://github.com/wireshark/wireshark

	Wireshark is a network protocol analyzer that lets you see what’s happening on your network at a microscopic level.

	wpscan

	https://github.com/wpscanteam/wpscan

	A tool to enumerate WordPress-based websites

	wuzz

	https://github.com/asciimoo/wuzz

	a command-line tool for interacting with HTTP(S) web services

	XSpear

	https://github.com/hahwul/XSpear

	a powerful XSS scanning and exploitation tool.

	xsrfprobe

	https://github.com/0xInfection/XSRFProbe

	a tool for detecting and exploiting Cross-Site Request Forgery (CSRF) vulnerabilities

	xsser

	https://github.com/epsylon/xsser

	XSS scanner.

	xsstrike

	https://github.com/s0md3v/XSStrike

	a Python tool for detecting and exploiting XSS vulnerabilities.

	xtightvncviewer

	https://www.commandlinux.com/man-page/man1/xtightvncviewer.1.html

	xtightvncviewer is an open source VNC client software.

	Yalis

	https://github.com/EatonChips/yalis

	Yet Another LinkedIn Scraper

	youtubedl

	https://github.com/ytdl-org/youtube-dl

	Download videos from YouTube and other sites.

	ysoserial

	https://github.com/frohoff/ysoserial

	A proof-of-concept tool for generating payloads that exploit unsafe Java object deserialization.

	yt-dlp

	https://github.com/yt-dlp/yt-dlp

	A youtube-dl fork with additional features and fixes

	zerologon

	https://github.com/SecuraBV/CVE-2020-1472

	Exploit for the Zerologon vulnerability (CVE-2020-1472).

	zipalign

	https://developer.android.com/studio/command-line/zipalign

	arguably the most important step to optimize your APK file

	zsteg

	https://github.com/zed-0xff/zsteg

	Detect steganography hidden in PNG and BMP images

 My resources

My resources

“My-resources” brings great features allowing users to make Exegol their own and customize it even further. This feature relies on a simple volume shared between the host and all exegol containers, and an advanced integration in the Exegol images directly.

Warning

The “my-resources” feature will do what it’s told to do. If users choose to use that feature to replace files or configuration, those replacements should take place. So if there are some additions to Exegol you’re not getting, it could be because you have a “my-resources” setup that replaces it.

To learn more about the volume options, details are available here.

Below are the features offered by “My-resources”, allowing users to extend Exegol beyond what is initially included (tools, resources).

	Custom tools: users can place their own custom standalone tools, binaries and scripts in the “my-resources” volume. This volume is accessible from all containers at /opt/my-resources.

	Supported setups: users can customize their exegol environments automatically and transparently without having to manually setting things up for each and every new Exegol container they create. In this functionality, a pre-set list of supported custom configuration is set, and will improve with time. It’s the easier and most user-friendly approach to customizing a few configurations.

	User setup: In this functionality, a shell script can be populated with every command a user wishes its containers to run at their creation.

	Custom tools

	Supported setups

	apt (packages, sources, keys)

	bloodhound (customqueries, config)

	firefox (addons, CA)

	python3 (pip3)

	tmux (conf)

	vim (vimrc, configs)

	neovim (.config/nvim)

	zsh (aliases, zshrc, history)

	User setup

	Troubleshooting

Custom tools

See also

Available from version 3.0.0 of any exegol image.

In the container, the /opt/my-resources/bin/ folder (~/.exegol/my-resources/bin/ on the host) is automatically added to the PATH of the zsh shell. The user can then add tools in that folder in order to use them from the container.

Hint

The most simple approach would be to add standalone binaries, but users could also add symbolic links that would point to somewhere else in /opt/my-resources/.

Example for a standalone binary
cp /path/to/tool ~/.exegol/my-resources/bin/

Example for a symbolic link
git -C ~/.exegol/my-resources/ clone "https://github.com/someauthor/sometool"
ln -s ~/.exegol/my-resources/sometool/script.py ~/.exegol/my-resources/bin/script.py

Supported setups

Configuration files stored in the /opt/my-resources/setup/ directory will be deployed on the containers and allow users to customize Exegol even further.
By default, the number of officially supported configuration files is limited, and it depends on the version of the image itself, not the wrapper.

Hint

In order to see what configuration files are supported in your version, the /opt/supported_setups.md documentation file can be read from any container.

This documentation will reference in detail all the supported customizations available over time, and the corresponding minimum image version required for each one.

If a user wants to deploy tools and configurations that are not supported, or more advanced, they can opt for the User setup solution.

apt (packages, sources, keys)

See also

Available from version 3.0.0 of any exegol image.

A system exists to easily install arbitrary APT packages in any new exegol container.

	Custom APT repositories can be added in exegol by filling in the /opt/my-resources/setup/apt/sources.list file

	Importing custom repositories usually requires importing GPG keys as well, which can be done by entering trusted GPG keys download URLs in the /opt/my-resources/setup/apt/keys.list file

	To install APT packages automatically (after updating the repository including the custom ones), just enter a list of package names in the /opt/my-resources/setup/apt/packages.list file

bloodhound (customqueries, config)

See also

Available from version 3.1.0 of the ad and full images.

A system exists to easily add one or several bloodhound customqueries files, or change its configuration file in any new exegol container.

To automatically:

	overwrite the ~/.config/bloodhound/config.json configuration file, simply create the file /opt/my-resources/setup/bloodhound/config.json

	replace the default exegol customqueries, place one or several valid customqueries files into the folder /opt/my-resources/setup/bloodhound/customqueries_replacement/.

	merge with the default exegol customqueries by placing one or several valid customqueries files into the folder /opt/my-resources/setup/bloodhound/customqueries_merge/

Tip

To be considered for replacing or merging, the customqueries files must be valid and bear the .json extension. The file names do not matter.
The output will be saved into the single file ~/.config/bloodhound/customqueries.json.

firefox (addons, CA)

See also

Available from version 3.0.2 of any exegol image.

A system exists to easily install arbitrary firefox addons in any new exegol container.

The /opt/my-resources/setup/firefox/addons.txt file allows the user to list addons to install from online sources. It must be filled with their links in Mozilla’s shop (for example https://addons.mozilla.org/fr/firefox/addon/foxyproxy-standard/).

The .xpi files in /opt/my-resources/setup/firefox/addons/ folder will be installed as well.

See also

Below, available from version 3.2.0 of any exegol image.

The .der files in /opt/my-resources/setup/firefox/CA/ folder will be trusted .

python3 (pip3)

See also

Available from version 3.0.0 of any exegol image.

A system exists to easily install arbitrary PIP3 packages in any new exegol container.

The /opt/my-resources/setup/python3/requirements.txt file allows the user to list a set of packages to install with constraints just like a classic requirements.txt file.

tmux (conf)

See also

Available from version 3.0.0 of any exegol image.

Exegol supports overloading its tmux configuration to allow all users to use their personal configuration.

	To automatically overwrite the ~/.tmux.conf configuration file, simply create the file /opt/my-resources/setup/tmux/tmux.conf

Tip

It is possible to install plugins with the APT customization system, details here.

vim (vimrc, configs)

See also

Available from version 3.0.0 of any exegol image.

Exegol supports overwriting its vim configuration to allow all users to use their personal configuration.

	To automatically overwrite the ~/.vimrc configuration file, simply create the file /opt/my-resources/setup/vim/vimrc

	
	vim configuration folders are also automatically synchronized:
	
	/opt/my-resources/setup/vim/autoload/* –> ~/.vim/autoload/

	/opt/my-resources/setup/vim/backup/* –> ~/.vim/backup/

	/opt/my-resources/setup/vim/colors/* –> ~/.vim/colors/

	/opt/my-resources/setup/vim/plugged/* –> ~/.vim/plugged/

	/opt/my-resources/setup/vim/bundle/* –> ~/.vim/bundle/

Tip

It is possible to install plugins with the APT customization system.

neovim (.config/nvim)

See also

Will be available from version 3.1.2 of any exegol image.

Exegol supports overwriting its neovim configuration to allow all users to use their personal configuration.

	To automatically overwrite the ~/.config/nvim/ configuration, copy your config in /opt/my-resources/setup/nvim/

Tip

It is possible to install plugins dependencies with the APT customization system.

zsh (aliases, zshrc, history)

See also

Available from version 3.0.0 of any exegol image.

To not change the configuration for the proper functioning of exegol but allow the user to add aliases and custom commands to zshrc,
additional configuration files will be automatically loaded by zsh to take into account the customization of the user .

	aliases: any custom alias can be defined in the /opt/my-resources/setup/zsh/aliases file. This file is automatically loaded by zsh.

	zshrc: it is possible to add commands at the end of the zshrc routine in /opt/my-resources/setup/zsh/zshrc file.

	history: it is possible to automatically add history commands at the end of ~/.zsh_history from the file /opt/my-resources/setup/zsh/history.

Tip

It is possible to install plugins with the APT customization system, details here.

User setup

See also

Available from version 3.0.0 of any exegol image.

The /opt/my-resources/setup/load_user_setup.sh script is executed on the first startup of each new container that has the “my-resources” feature enabled. Arbitrary code can be added in this file, in order to customize Exegol (dependency installation, configuration file copy, etc).

Warning

It is strongly advised not to overwrite the configuration files provided by exegol (e.g. /root/.zshrc, /opt/.exegol_aliases, …), official updates will not be applied otherwise.

Troubleshooting

In case of problem, the customization system logs all actions in the /var/log/exegol/load_setups.log file.

If the whole installation went smoothly the log file will be compressed by gunzip and will have the name /var/log/exegol/load_setups.log.gz

Tip

Logs in .gz format can be viewed directly without unpacking them with the zcat, zgrep, zdiff or zmore command!

 Credentials

Credentials

Some tools are pre-configured with the following credentials

	Element

	User

	Password

	neo4j database

	neo4j

	exegol4thewin

	bettercap ui

	bettercap

	exegol4thewin

	trilium

	trilium

	exegol4thewin

	empire

	empireadmin

	exegol4thewin

	wso-webshell (PHP)

	
	exegol4thewin

 Services list

Services list

This section lists the services that can be used in Exegol containers and their associated default ports.

Note

Note that, as of 25/10/2023, a utility is being developped in order to randomize those ports so that multiple containers being used concurrently don’t have their services step on one another if they share a network interface. This utility will be mostly transparent, and will modify the services configuration files dynamically.

	Service

	Port

	Commands

	Comments

	neo4j

	bolt

	http

	https

	7687

7474

7373

	neo4j start,
neo4j stop,
neo4j restart

	Used by BloodHound, and BloodHound-related projects.

	BloodHound-CE

	1030

	bloodhound-ce
bloodhound-ce-reset
bloodhound-ce-stop

	BloodHound Community Edition Web Interface

	postgresql

	5432

	service postgresql [...]

	Used by BloodHound CE

	Trilium

	1991

	trilium-start,
trilium-stop

	Collaborative note taking app. https://github.com/zadam/trilium

	Burp Suite

	8080

	burpsuite

	HTTP(S) Proxy

	Starkiller (Empire)

	TBD

	ps-empire server

	GUI for the Empire post-exploit framework (https://github.com/BC-SECURITY/Empire)

	Havoc

	40056

	havoc client/server

	C2 Framework in GO (https://github.com/HavocFramework/Havoc)

	Desktop

	vnc

	websockify

	6336

random

	desktop-start,
desktop-stop,
desktop-restart

	Remote graphical desktop feature (beta). Used with the --desktop from up-to-date wrapper.

 Resources

Resources

Exegol’s “offline resources” are a neat choice of standalone tools and scripts that are often used during penetration tests,
CTFs and red-teams.
While many penetration testers download those resources again every time they need them, Exegol users don’t have to.
Everything is managed by the wrapper and they are shared with every container by default (at /opt/resources).

Resources list

Hint

The list featured here is automatically generated. Exegol features CI/CD pipelines that build the images, update the resources, etc.
When a change is made on the Exegol-resources repository, it’s reflected here, in the list.

	Resource

	Link

	Description

	SysInternals

	https://learn.microsoft.com/en-us/sysinternals

	Windows utilities signed by Microsoft

	pspy

	https://github.com/DominicBreuker/pspy

	Monitor linux processes without root permissions

	PEASS-ng

	https://github.com/carlospolop/PEASS-ng

	Privilege Escalation Awesome Scripts SUITE

	linux-smart-enumeration (lse.sh)

	https://github.com/diego-treitos/linux-smart-enumeration

	Linux enumeration tool for pentesting and CTFs with verbosity levels

	LinEnum

	https://github.com/rebootuser/LinEnum

	Scripted Local Linux Enumeration & Privilege Escalation Checks

	Linux Exploit Suggester

	https://github.com/The-Z-Labs/linux-exploit-suggester

	Linux privilege escalation auditing tool

	Mimikatz

	https://github.com/gentilkiwi/mimikatz

	A little tool to play with Windows security

	SharpHound.exe

	https://github.com/BloodHoundAD/BloodHound

	C# ingestor for BloodHound

	JuicyPotato.exe

	https://github.com/ohpe/juicy-potato

	https://github.com/ohpe/juicy-potato

	PrintSpoofer

	https://github.com/itm4n/PrintSpoofer

	Abusing SeImpersonatePrivilege from LOCAL/NETWORK SERVICE

	GodPotato

	https://github.com/BeichenDream/GodPotato

	Abusing SeImpersonatePrivilege on recent Windows OS (up to W11 and Server 2022)

	static netcat (linux)

	https://github.com/andrew-d/static-binaries

	Utility to establish TCP or UDP connections

	static netcat (windows)

	https://gitlab.com/onemask/pentest-tools

	Utility to establish TCP or UDP connections

	SpoolSample.exe

	https://gitlab.com/onemask/pentest-tools

	PoC tool to coerce Windows hosts authenticate to other machines

	DiagHub.exe

	https://gitlab.com/onemask/pentest-tools

	Diagnostics Hub Standard Collector Service

	LaZagne

	https://github.com/AlessandroZ/LaZagne

	Credentials recovery project

	Sublinacl.exe

	https://gitlab.com/onemask/pentest-tools

	Modify Access Control Entries

	plink.exe

	https://www.cog-genomics.org/plink/

	Network connection tool

	deepce

	https://github.com/stealthcopter/deepce

	Docker Enumeration Escalation of Privileges and Container Escapes

	Some webshells

	
	PHP and ASPX webshells

	ysoserial

	https://github.com/pwntester/ysoserial

	A proof-of-concept tool for generating payloads that exploit unsafe Java object deserialization

	http-put-server

	https://gist.githubusercontent.com/mildred/67d22d7289ae8f16cae7/raw/214c213c9415da18a471d1ed04660022cce059ef/server.py

	HTTP PUT Server

	Chisel

	https://github.com/jpillora/chisel

	A fast TCP/UDP tunnel over HTTP

	ligolo-ng

	https://github.com/nicocha30/ligolo-ng

	Advanced yet simple tunneling/pivoting tool that uses a TUN interface

	bitleaker

	https://github.com/kkamagui/bitleaker

	This tool can decrypt a BitLocker-locked partition with the TPM vulnerability

	napper

	https://github.com/kkamagui/napper-for-tpm

	TPM vulnerability checking tool for CVE-2018-6622

	mimipenguin

	https://github.com/huntergregal/mimipenguin

	A tool to dump the login password from the current linux user

	p0wny-shell

	https://github.com/flozz/p0wny-shell

	Single-file PHP shell

	Inveigh

	https://github.com/Kevin-Robertson/Inveigh

	.NET IPv4/IPv6 machine-in-the-middle tool for penetration testers

	MailSniper

	https://github.com/dafthack/MailSniper

	Penetration testing tool for searching through email in a Microsoft Exchange

	PowerSploit

	https://github.com/PowerShellMafia/PowerSploit

	A PowerShell Post-Exploitation Framework

	PrivescCheck

	https://github.com/itm4n/PrivescCheck

	Privilege Escalation Enumeration Script for Windows

	SharpCollection

	https://github.com/Flangvik/SharpCollection

	Nightly builds of common C# offensive tools

	WinEnum

	https://github.com/neox41/WinEnum

	Script for Local Windows Enumeration

	impacket-examples-windows

	https://github.com/maaaaz/impacket-examples-windows

	The great impacket example scripts compiled for Windows

	nishang

	https://github.com/samratashok/nishang

	Offensive PowerShell for red team

 Users

Users

This part of the documentation is meant for Exegol users, those who want to understand the project a bit more, open issues, get in touch with the community, etc..

	Opening issues

	Roadmap

	Discord

Opening issues

Create an issue in the correct repository:

	For any problem concerning Exegol WRAPPER [https://github.com/ThePorgs/Exegol/issues] (the exegol command).

	For any problem concerning Exegol IMAGE [https://github.com/ThePorgs/Exegol-images/issues] (the exegol environment).

	For any problem concerning Exegol RESOURCE [https://github.com/ThePorgs/Exegol-resources/issues] (the exegol offline resources).

	For any problem concerning Exegol DOCUMENTATION [https://github.com/ThePorgs/Exegol-docs/issues] (the exegol documentation).

Roadmap

The roadmap is available on GitHub: https://github.com/orgs/ThePorgs/projects/1/views/1

[image: Roadmap (GitHub)]

 Contributors

Contributors

This part of the documentation is meant for Exegol contributors, those who write code and open pull requests. If adds up to the users documentation.

First things first, once you know on what module you want to contribute (wrapper [https://github.com/ThePorgs/Exegol], images [https://github.com/ThePorgs/Exegol-images], documentation [https://github.com/ThePorgs/Exegol-docs], resources [https://github.com/ThePorgs/Exegol-resources], etc.) fork it [https://docs.github.com/en/get-started/quickstart/fork-a-repo], checkout [https://git-scm.com/docs/git-checkout] to the dev branch, then come back to this page to start coding.

	Documentation

	Images

	Adding a new tool

	Function structure

	Install standards

	Other standards

	Multi-architecture builds

	Calling the install function

	Submitting the pull request

	Temporary fixing a tool

	Adding to my-resources

	Wrapper

	Signing commits

Documentation

A new feature, whether it’s on the wrapper, images, or any other module, must be documented accordingly. Make sure to open a pull request to the appropriate Exegol docs [https://github.com/ThePorgs/Exegol-docs] branch on top of your wrapper/images/whatever pull request.

Exegol-docs branches

	Branch

	Purpose

	main

	nothing gets pushed there. This branch is made to merge with the other branches.

	dev-wrapper

	Related to the wrapper (Exegol [https://github.com/ThePorgs/Exegol])

	dev-images

	Related to the images (Exegol-images [https://github.com/ThePorgs/Exegol-images])

	dev

	General purpose

Before pushing a pull request on the documentation repository, it is advised to try and compile locally to make sure there are no errors and everything renders as expected. First, the requirements listed in requirements.txt must be installed (e.g. pip install --user -r ./requirements.txt). Then, the one-liner below can be used to remove any previous build, compile again and open the build in a browser.

rm -r build; make html; open "build/html/community/contributors.html"

Nota bene: in the example above, the open command opens an Internet browser (it’s a macOS command), but it can be replaced by anything else that fits the contributor’s environement (e.g. firefox).

Images

The Docker images are the heart of the Exegol project. A neat choice of tools, configurations, aliases, history commands, and various customizations are prepared in multiple images adapted for multiple uses: web hacking, Active Directory, OSINT (Open Source INTelligence), etc.

If you want to contribute to this part of the project, there are some things you need to know and some rules you need to follow.

Adding a new tool

In order to add a new tool to an image, here is how it goes. First, you need to figure out in what package your tool installation function must go to: packages [https://github.com/ThePorgs/Exegol-images/tree/main/sources/install].

Function structure

When preparing the install function to the package, don’t forget to include the following functions:

	colorecho "Installing yourtool": this is needed to raise logs inside the CI/CD pipeline

	catch_and_retry <some command>: this one is optional. When a command uses the Internet and could potentially fail randomly, the catch_and_retry wrapper is here to retry that commands multiple times with increasing time intervals in order to avoid having a whole build fail because of one temporary network error. Nota bene: most standard Internet-involved commands are transparently put behind a catch_and_retry (e.g. git, wget, curl, go, etc.).

	add-aliases yourtool: if your tool needs to have one or multiple aliases to work properly. You will need to create the aliases file in /sources/assets/shells/aliases.d/ named after your tool. This file must contain the alias(es) to set as follows.

alias tool.py='python3 /opt/tools/yourtool/tool.py'

	add-history yourtool: if it’s relevant to give some command example of your tool. No need to populate the history with a command that’s very short or never used. Using long arguments is preferred. Using environment variables is preferred (e.g. $USER, $PASSWORD, $TARGET, etc.). You will need to create the history file in /sources/assets/shells/history.d/ named after your tool. This file must contain the history command(s) like the example below.

yourtool.py --user "$USER" --password "$PASSWORD" --target "$TARGET"
yourtool.py --mode enum --user "$USER" --target "$TARGET"
yourtool.py --mode unauthenticated

	add-test-command "testcommand": this is needed by the CI/CD pipeline to conduct unit tests for all tools to make sure they are installed properly before publishing new images. The test command needs to return 0 if the tool works properly, anything else if it doesn’t. For instance, something like yourtool.py --help usually works, but not always! In order to find what command can be used for unit tests, you can do something like yourtool.py --help; echo $? to see what code is returned after the command is executed. Once trick that can be used when the --help command returns something !=0 is to do some grep like yourtool.py --help|& grep 'Usage:'.

	add-to-list "yourtool,https://link.to/the/tool,description": this is used by the CI/CD pipeline to automatically export tools in the Tools list. The format of the entry is standard 3-columns CSV (comma separated values). The first column is the tool name, then the link to the tool, then the description. Be careful to not have more than 2 commas and replace any comma in the description by something else.

In case your tool doesn’t need aliases or history commands, add the following comment at the beggining of the tool install function: # CODE-CHECK-WHITELIST=. Then add a comma-separated list of the exclusions. Below are some examples.

CODE-CHECK-WHITELIST=add-aliases
CODE-CHECK-WHITELIST=add-aliases,add-history

TL;DR, your tool installation function should look something like this:

function install_yourtool() {
 colorecho "Installing yourtool"
 # tool install commands [...]
 add-aliases yourtool
 add-history yourtool
 add-test-command "yourtool.py --help"
 add-to-list "yourtool,https://link.to/the/tool,description"
}

Install standards

When installing a tool, depending on how it gets installed, here are the rules.

	Most tools have their virtual environment, in order to avoid dependencies conflicts. Python virtual environments must have access to the system site-packages, to avoid redunduncy on already install common dependencies.

	Most tools are installed either in their own directory in /opt/tools/ or have the binary (or a symlink) in /opt/tools/bin/.

	Disk space being limited, we’re not pull every code source around. When possible, add the --depth 1 option to your usual git clone command.

Python sources (pipx)Python sources (venv)APT installGoRubyCompile sourcesDownload compiled binary
The easiest way to install a Python tool is to use pipx.

from github.com example
python3 -m pipx install git+https://github.com/AUTHOR/REPO

from local sources
git -C /opt/tools/ clone --depth 1 https://github.com/AUTHOR/REPO
python3 -m pipx install --system-site-packages /opt/tools/yourtool/

But some tools cannot be installed this way, either because they’re missing the setup.py or for any other obscure reason. In that case, opt for the “Python (venv)” solution.

In this example, the tool sources are downloaded, a virtual python environment is set up, requirements are installed, and an alias is created.

Nota bene 1: when the requirements are installed, it’s better to have the command put behind a catch_and_retry so that if their is a temporary network outage during the build, the command will be tried multiple times with increased delays to avoid having the whole build fail.

Nota bene 2: there is no need to put standard git, wget, curl, go, and similar commands behind a catch_and_retry as its already handled transparently.

git -C /opt/tools/ clone --depth 1 https://github.com/AUTHOR/REPO
cd /opt/tools/yourtool || exit
python3 -m venv --system-site-packages ./venv/
source ./venv/bin/activate
pip3 install -r requirements.txt
deactivate
add-aliases yourtool

And add the following alias to your new alias file in /sources/assets/shells/aliases.d/

alias yourtool='/opt/tools/yourtool/venv/bin/python3 /opt/tools/yourtool/yourtool.py'

APT installations are regrouped to go faster and save some bandwith. In the package_whatever.sh file you’re editing, look for a function called install_*_apt_tools().
The package you want to install needs to be added there, along with the add-history, add-test-command and add-to-list instructions.

Go tools can be installed with a standard go install -v github.com/AUTHOR/REPO@latest command.

A typical Ruby tool install will look like this:

function install_yourtool() {
 colorecho "Installing yourtool"
 rvm use 3.0.0@yourtool --create
 gem install yourtool
 rvm use 3.0.0@default
 add-aliases yourtool
 add-history yourtool
 add-test-command "yourtool --help"
 add-to-list "yourtool,https://github.com/AUTHOR/REPO,description"
}

And the alias file will look something like this.

alias yourtool='/usr/local/rvm/gems/ruby-3.0.0@yourtool/wrappers/ruby /usr/local/rvm/gems/ruby-3.0.0@yourtool/bin/yourtool'

When installing a binary tool (pre-compiled or compiled live), it needs to be moved or linked in /opt/tools/bin.
Below is an example of tool compilation and installation.

function install_yourtool() {
 colorecho "Installing yourtool"
 git -C /opt/tools/ clone --depth 1 https://github.com/AUTHOR/REPO
 cd /opt/tools/yourtool
 ./configure
 make
 ln -s "/opt/tools/yourtool/bin/yourtool" "/opt/tools/bin/yourtool"
 add-history yourtool
 add-test-command "yourtool --help"
 add-to-list "yourtool,https://github.com/AUTHOR/REPO,description"
}

It’s not uncommon to have tools already compiled, sometimes available in the “releases” section of a GitHub repository.
In the following example, the latest .tar.xz release archive is dynamically fecthed from the repo, by grepping the right strings to match the name of the file and extracted. And then a symbolic link is created.
The extact context can differ for each and every tool, but the example function below can serve as codebase. Trying to find similar examples in the code could also help a contributor find similar contexts and how they got implemented.

function install_yourtool() {
 colorecho "Installing yourtool"
 local URL
 URL=$(curl --location --silent "https://api.github.com/repos/AUTHOR/REPO/releases/latest" | grep 'browser_download_url.*somestring.*tar.xz"' | grep -o 'https://[^"]*')
 curl --location -o /tmp/tool.tar.xz "$URL"
 tar -xf /tmp/yourtool.tar.xz --directory /tmp
 rm /tmp/yourtool.tar.xz
 mv /tmp/yourtool* /opt/tools/yourtool
 ln -s "/opt/tools/yourtool/bin/yourtool" "/opt/tools/bin/yourtool"
 add-history yourtool
 add-test-command "yourtool --help"
 add-to-list "yourtool,https://github.com/AUTHOR/REPO,description"
}

Other standards

If your tool opens ports, or if there are credentials at play, please take a look at the corresponding documentations

	Credentials

	Ports & services

Multi-architecture builds

Know that Exegol images are built by, and for, AMD64 and ARM64 systems. Most systems are AMD64 (x86_64), but some other people use ARM64 (M1/M2 Apple Sillicon chips, 64bits Raspberry-Pies, …).
Whenever possible, try to make sure your tool install function works for both architectures.
Rest assured, if you don’t have both architectures at your disposal it’s perfectly fine, we’ll take care of this part for you.
If you do, and if your tool installation function includes some commands that differ wether they run on an ARM64 or AMD64 host, you can use the following structure.

if [[$(uname -m) = 'x86_64']]
then
 # command for AMD64
elif [[$(uname -m) = 'aarch64']]
then
 # command for ARM64
else
 criticalecho-noexit "This installation function doesn't support architecture $(uname -m)" && return
fi

Calling the install function

Once the install function is over with, it needs to be called in the function that holds the same name as the package.
For instance, if you’re adding your tool install function in the package_web.sh package, you’ll need to call that function in the package_ad() function (usually at the bottom of that file).

It will look something like this.

function package_web() {
 [...]
 install_yourtool
 [...]
}

Submitting the pull request

Hint

Once all your changes are over, and before submitting a pull request, it is advised to test your installation process locally.
The Exegol wrapper can be used to build local images. Run exegol install --help to see some examples.
You can also run the unit tests yourself by creating

build the local image
exegol install "testimage" "full" --build-log "/tmp/testimage.log"

create and start a container for the tests
exegol start "testcontainer" "testimage"

run the tests (from the container)
cat /.exegol/build_pipeline_tests/all_commands.txt | grep -vE "^\s*$" | sort -u > /.exegol/build_pipeline_tests/all_commands.sorted.txt
python3 /.exegol/build_pipeline_tests/run_tests.py
cat /.exegol/build_pipeline_tests/failed_commands.log

Warning

Your pull request needs to be made against the dev branch.

Once you submit your pull request, and once the various changes that may be requested are made, a CI/CD pipeline will run to make sure your code is compliant and that the tool is installed and works as intended.
The pipeline may raise some issues, but if they’re not related to your tool (e.g. network issues are common) don’t worry about it. If the errors are due to your tool install, then you’ll need to make the necessary changes to make your install work.

Once everything works, the pull request will be merged, the pipeline will run again in order to test, build and publish a new nightly image. Congrats, you’re now an Exegol contributor!

Temporary fixing a tool

Tools sometimes have their own issues along their development. A temporary fix can be added as follows, in order to let builds pass successfully, while the respective tool is not fixed. The fix depends on the way the tool is supposed to be installed.

Git (checkout)Git (merge PRs)
Applying the temporary fix for a tool installed through git goes as follows when checking out a previous commit

	Find the commit id that made the tool install fail. This can be found in a try & repeat manner by installing the tool in an exegol container, checking out on a commit ID, try installing again, and repeat until it works.

	Comment out the inital git clone command.

	Add the temporary fix (git clone and git checkout) in a if statement that makes sure the fix won’t stay there forever. The error message will be raised and noticed in the pipeline.

	(bonus) create an issue on the repo (if it doesn’t exist already) with the appropriate logs to help the tool’s maintainers notice the installation error and fix it.

function install_TOOL() {
 [...]
 # git -C /opt/tools/ clone --depth 1 https://github.com/REPO/TOOL.git
 local temp_fix_limit="YYYY-MM-DD"
 if ["$(date +%Y%m%d)" -gt "$(date -d $temp_fix_limit +%Y%m%d)"]; then
 criticalecho "Temp fix expired. Exiting."
 else
 git -C /opt/tools/ clone https://github.com/REPO/TOOL.git
 git -C /opt/tools/TOOL checkout 774f1c33efaaccf633ede6e704800345eb313878
 fi
 [...]
}

When merging PRs on the fly, the temp fix goes like this

	Find the PRs the need to be merged. Warning: only PRs from trusted authors must be hot-merged in this manner.

	List the PR numbers in the PRS array

	Merge. In the example below the --strategy-option theirs strategy is chosen, but it can be changed if needed.

function install_TOOL() {
 [...]
 git -C /opt/tools/ clone --depth 1 https://github.com/REPO/TOOL.git
 local temp_fix_limit="YYYY-MM-DD"
 if ["$(date +%Y%m%d)" -gt "$(date -d $temp_fix_limit +%Y%m%d)"]; then
 criticalecho "Temp fix expired. Exiting."
 else
 git config --local user.email "local"
 git config --local user.name "local"
 local PRS=("111" "222" "333")
 for PR in "${PRS[@]}"; do git fetch origin "pull/$PR/head:pull/$PR" && git merge --strategy-option theirs --no-edit "pull/$PR"; done
 fi
 [...]
}

Adding to my-resources

Hint

This documentation is not written yet… Please contact us if you would like to contribute to this part and don’t know how.

Wrapper

Hint

This documentation is not written yet… Please contact us if you would like to contribute to this part and don’t know how.

Signing commits

To make the project as secure as possible, signed commits are now required to contribute to the project.
Using signatures for commits on GitHub serves several important purposes :

	Authentication: it verifies the authenticity of the commit, ensuring that it was indeed made by the person claiming to have made it.

	Integrity: it ensures that the commit hasn’t been tampered with since it was signed. Any changes to the commit after it has been signed will invalidate the signature.

	Trust: this ensures that all contributions come from trusted sources.

	Visibility: on GitHub, signed commits are marked with a “verified” label, giving users and collaborators confidence in the commit’s origin and integrity.

GitHub offers an official documentation [https://docs.github.com/fr/authentication/managing-commit-signature-verification/signing-commits] on the matter that can be followed to setup and sign commits properly. Exegol’s documentation will sum it up briefly and link to it whenever it’s needed.

While SSH (+ FIDO2) is preferred since it offers better multi-factor signing capabilities (knowledge + hardware possession factors), people that don’t have the required hardware can proceed with GPG or SSH.

GPGSSHSSH (+ FIDO2)
Generating a GPG key can be done by following GitHub’s official documentation on the matter (generating a new GPG key [https://docs.github.com/en/authentication/managing-commit-signature-verification/generating-a-new-gpg-key]).
TL;DR, the commands look something like this:

for the email, indicate your public email (ID+Name@users.noreply.github.com) from https://github.com/settings/emails
gpg --quick-generate-key "YOUR_NAME <ID+Name@users.noreply.github.com>" ed25519 sign 0
gpg --list-secret-keys --keyid-format=long
gpg --armor --export $KEYID

Once the GPG key is generated, it can be added to the contributor’s GitHub profile. Again, GitHub’s documentation explains how to achieve that (adding a GPG key to your GitHub account [https://docs.github.com/en/authentication/managing-commit-signature-verification/adding-a-gpg-key-to-your-github-account]).

Once the GPG key is generated and associated to the GitHub account, it can be used to sign commits. In order to achieve that, the contributor must configure git properly on his machine (telling git about your GPG key [https://docs.github.com/en/authentication/managing-commit-signature-verification/telling-git-about-your-signing-key]).

TL;DR: the commands look something like this to set it up for git CLI:

gpg --list-secret-keys --keyid-format=long
git config --global user.signingkey $KEYID

(option 1) configure locally on a specific repo
cd /path/to/repository && git config commit.gpgsign true

(option 2) configure for all git operations
git config --global commit.gpgsign true

To set it up on IDEs, proper official documentations can be followed (e.g. GitKraken [https://help.gitkraken.com/gitkraken-client/commit-signing-with-gpg/#configure-gpg-in-gitkraken], PyCharm [https://www.jetbrains.com/help/pycharm/set-up-GPG-commit-signing.html#enable-commit-signing]).

Generating an SSH key can be done by following GitHub’s official documentation on the matter (generating a new SSH key [https://docs.github.com/en/authentication/connecting-to-github-with-ssh/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent]).
TL;DR, the commands look something like this:

for the email, indicate your public email (ID+Name@users.noreply.github.com) from https://github.com/settings/emails
ssh-keygen -t ed25519 -C "YOUR_NAME <ID+Name@users.noreply.github.com>"

Once the SSH key is generated, the public part can be added to the contributor’s GitHub profile. Again, GitHub’s documentation explains how to achieve that (adding a new SSH key to your GitHub account [https://docs.github.com/en/authentication/connecting-to-github-with-ssh/adding-a-new-ssh-key-to-your-github-account]).

Once the SSH key is generated and associated to the GitHub account, it can be used to authenticate and sign commits. In order to achieve that, the contributor must configure ssh and git properly on his machine (telling git about your SSH key [https://docs.github.com/en/authentication/managing-commit-signature-verification/telling-git-about-your-signing-key#telling-git-about-your-ssh-key]).

TL;DR: the commands look something like this:

Hint

The git client version must be 2.34 or later.

if setting up for the first time, configure git
git config --global user.name "YOUR_NAME"
for the email, indicate your public email (ID+Name@users.noreply.github.com) from https://github.com/settings/emails
git config --global user.email "ID+Name@users.noreply.github.com"

git config --global gpg.format ssh
replace the public key path if needed, below is an example
git config --global user.signingkey "$HOME/.ssh/id_ed25519.pub"

configure git to sign commits and tags by default
git config --global commit.gpgsign true
git config --global tag.gpgsign true

verify commits locally, associate SSH public keys with users
mkdir -p ~/.config/git
echo "$(git config --get user.email) $(cat ~/.ssh/id_ed25519.pub)" | tee ~/.config/git/allowed_signers
git config --global gpg.ssh.allowedSignersFile "$HOME/.config/git/allowed_signers"

The SSH connection can then be tested as follows (testing your SSH connection [https://docs.github.com/en/authentication/connecting-to-github-with-ssh/testing-your-ssh-connection]).

load the SSH agent into the current shell
eval "$(ssh-agent -s)"

test the SSH authentication to GitHub servers
ssh -T git@github.com

This part of the doc explains how to setup and use FIDO2 security keys, such as YubiKeys, Google’s Titan, etc.

First of all, a new FIDO2 key can be configured as follows to set up a PIN.

list FIDO2 devices
fido2-token -L

set a PIN for the device
fido2-token -S $device

Then, a resident key [https://developers.yubico.com/WebAuthn/WebAuthn_Developer_Guide/Resident_Keys.html] can be created and stored on the YubiKey as follows (see Yubico’s documentation [https://www.yubico.com/blog/github-now-supports-ssh-security-keys/]).

Hint

Some FIDO2 keys (e.g. recent YubiKeys, and probably others) support resident keys. A resident key is stored on the hardware key itself and easier to import to a new computer because it can be loaded directly from the security key.
In order to use that feature, the -O resident option can be added to the ssh-keygen command chosen below.

(default) touch only
ssh-keygen -t ed25519-sk

PIN + touch
ssh-keygen -t ed25519-sk -O verify-required

nothing (could be unsupported by some OpenSSH clients)
ssh-keygen -t ed25519-sk -O no-touch-required

PIN (could be unsupported by some OpenSSH clients)
ssh-keygen -t ed25519-sk -O verify-required -O no-touch-required

Once the SSH key is generated, the public part can be added to the contributor’s GitHub profile. GitHub’s documentation explains how to achieve that (adding a new SSH key to your GitHub account [https://docs.github.com/en/authentication/connecting-to-github-with-ssh/adding-a-new-ssh-key-to-your-github-account]).

Once a key is created and added on GitHub, it can be added to the contributor’s machine SSH environment as follows. This is as easy as copy-pasting the public and private key parts to ~/.ssh.

Hint

If you opted for a resident key setup, the SSH key can be loaded from the hardware key itself.

Note that those steps shouldn’t be needed when the key has just been created, as the keys should automatically be added to ~/.ssh. The commands below are mostly relevant when using existing resident keys on a new system.

temporary
needs to be done again after a reboot
ssh-add -K

permanent
will download the private and public resident security keys in the current directory
private key is to be moved in ~/.ssh (physical FIDO2 key will always be needed)
ssh-keygen -K
it's on purpose, the "_rk" part is removed, otherwise it doesn't work.
mv id_ed25519_sk_rk ~/.ssh/id_ed25519_sk
mv id_ed25519_sk_rk.pub ~/.ssh/id_ed25519_sk.pub

Warning

While the ssh-keygen -K command saves names files id_ed25519_sk_rk[.pub], it’s on purpose the _rk part is then removed on the host. Otherwise, SSH fails at handling the keys. The files must be named id_ed25519_sk[.pub] on the system.

Once the SSH environment is ready, git CLI can be configured to rely on the security key for signing commits and authenticating (telling git about your SSH key [https://docs.github.com/en/authentication/managing-commit-signature-verification/telling-git-about-your-signing-key#telling-git-about-your-ssh-key]).

Hint

The git client version must be 2.34 or later.

if setting up for the first time, configure git
git config --global user.name "YOUR_NAME"
for the email, indicate your public email (ID+Name@users.noreply.github.com) from https://github.com/settings/emails
git config --global user.email "ID+Name@users.noreply.github.com"

git config --global gpg.format ssh
replace the public key path if needed, below is an example
git config --global user.signingkey "$HOME/.ssh/id_ed25519_sk.pub"

configure git to sign commits and tags by default
git config --global commit.gpgsign true
git config --global tag.gpgsign true

verify commits locally, associate SSH public keys with users
mkdir -p ~/.config/git
echo "$(git config --get user.email) $(cat ~/.ssh/id_ed25519_sk.pub)" | tee ~/.config/git/allowed_signers
git config --global gpg.ssh.allowedSignersFile "$HOME/.config/git/allowed_signers"

The SSH connection can then be tested as follows (testing your SSH connection [https://docs.github.com/en/authentication/connecting-to-github-with-ssh/testing-your-ssh-connection]).

load the SSH agent into the current shell
eval "$(ssh-agent -s)"

test the SSH authentication to GitHub servers
ssh -T git@github.com

Hint

The contributor’s GitHub account can be configured to mark unsigned commits as unverified or partially verified. While it’s not mandatory regarding contributions to Exegol since the requirement is managed on Exegol repositories directly, it’s a nice thing to do. See GitHub’s documentation on Vigilante mode [https://docs.github.com/en/authentication/managing-commit-signature-verification/displaying-verification-statuses-for-all-of-your-commits].

 Maintainers

Maintainers

This part of the documentation is meant for Exegol maintainers. It adds up to the contributors documentation.

	Wrapper release

	Preparation

	1. Git updates

	2. Config reviews

	Tests & build

	Post build

	Manual Upload

	Post-Deploy

	Images release

	Prepare changes

	Merge changes

	New tag

	Publish release

	CI/CD Pipeline

	GitHub Actions

	1. Setting up secrets

	2. Deploying a runner

	3. Checking runners status

	4. Understanding the pipelines

	4. Common errors

	1. docker login

	2. Disk space

	Pull Requests

Wrapper release

Hint

The wrapper documentation must be aligned with the wrapper features. . The docs PR can be merged once the wrapper is released.

Preparation

1. Git updates

The first step is to update the project and sub-modules, meaning pointing the exegol-images and exegol-resources sub-modules to the latest master version.
Even if the wrapper is able to auto-update itself, it is always better to keep the base reference at least up to date.

With gitWith Exegol

	Update current wrapper repo:

git pull

	Update git submodules and checkout to main branch for release:

git -C exegol-docker-build checkout main
git -C exegol-docker-build pull
git -C exegol-resources checkout main
git -C exegol-resources pull

Update to the latest version of the main branches (checkout if needed, except for the wrapper which remains in branch dev)

exegol update -v

Important

Don’t forget to reload and commit any submodule update at this step !

2. Config reviews

	Review exegol.utils.ConstantConfig variables

	Change version number ! (remove the alpha or beta tag at the end of the version number)

	Review documentation

	Review README.md

Tests & build

First, test the code with mypy:

mypy exegol.py --ignore-missing-imports --check-untyped-defs

You can execute this one-liner to check the project and build it.

Warning

Require build [https://packaging.python.org/en/latest/tutorials/packaging-projects/#generating-distribution-archives] package installed!

Hint

Exegol can only be published through a source build distribution because of the source code files for building local images.

python3 setup.py clean test && \
 (rm -rf Exegol.egg-info && python3 -m build --sdist) || \
 echo "Some tests failed, check your code and requirements before publishing!"

Post build

	Upgrade tests.test_exegol.py version number to the next version build to avoid future mistake

	Commit updates

	Publish PR

	Wait for review and merge

Manual Upload

Important

PyPi packaging and upload is now handle by GitHub action. It will be triggered with the creation of the new tag in the next-step with the release creation.

This step is no longer needed.

After validation of the PR, we can upload the new version package to pypi.

Warning

Require twine [https://packaging.python.org/en/latest/tutorials/packaging-projects/#uploading-the-distribution-archives] package installed and token configured on ~/.pypirc!

	Check package upload on the test repository (optional)

python3 -m twine upload --repository testpypi dist/* --verbose

	Upload to the production repository

python3 -m twine upload dist/*

Post-Deploy

	Create new github release with new version tag

	Fast-forward dev branch to the latest master commit

	Change the wrapper version on the dev branch to x.y.zb1

Images release

Hint

The images documentation must be aligned with the images features. Make sure to add code to the appropriate Exegol docs [https://github.com/ThePorgs/Exegol-docs] branch and have a pull request ready. The docs PR can be merged once the images are released.

Prepare changes

The first step consists in preparing the dev branch for merge.

	create a pull request dev -> main named Release X.Y.Z (Release X.Y.ZbI is also accepted, X, Y, Z and I being numbers. Creating this pull request will trigger the pre-release workflows. The PR comment must indicate all major changes.

	edit the dev branch until the pull requests checks (pipeline) all pass, effectively publishing all images to the preproduction Dockerhub registry

	once all checks are good, the PR needs to be approved by a maintainer.

Merge changes

Once the PR is approved and ready for merge, it can be merged

	merge the PR with Create a merge commit

	Synchronize the dev branch with the latest main update with a fast-forward merge

git checkout main
git pull --all
git checkout dev
git pull --all
git merge --ff-only main
git push

New tag

The X.Y.Z (or X.Y.ZbI) tag then needs to be placed on the same commit the dev and main branches point to.

Optionally, the “Annotated Tag Message” can be set to the PR initial comment with the --file message.txt argument in the git tag command below.

git tag "X.Y.Z"
git push origin --tags

Puhing this tag will trigger the release workflow. Simply put, the workflow will migrate the images from preprod registry to production registry.

Maintainers needs to make sure workflow goes as planned and images end up in the prod Dockerhub registry. If the release fails for some reason, the tag can be deleted, changes pushed, and then the tag can be created again to trigger the release again (git tag -d "X.Y.Z" && git push --delete origin "X.Y.Z").

Publish release

The final step is to create a “release” in github (https://github.com/ThePorgs/Exegol-images/releases/new).

	The release must point to the tag created before.

	The release must be named Exegol images X.Y.Z.

	The release notes can be created with the Generate releases notes button.

	Set it as latest release.

	Publish

CI/CD Pipeline

The Exegol project relies on a continuous integration and continuous deployment (CI/CD) pipeline for multiple scenarios. At the time of writing, Tue 31 Jan 2023, the pipeline is structured as follows:

wrapperimagesresourcesdocs
The GitHub Actions platform is used on the Exegol module. Its workflows are used for internal and external pull requests, new releases and testing on every commit. The workflows build, and push Python packages on the official PyPI registry [https://pypi.org/project/Exegol/], and run tests to make sure everything works as it should.

The GitHub Actions platform is used on the Exegol-images submodule. Its workflows run for internal and external pull requests, new commits, new tags, and allow to:

	build AMD64 and ARM64 images on self-hosted runners

	run tests to make sure the tools are installed properly

	automatically export tools list to the documentation

	push the images on the official Dockerhub registry [https://hub.docker.com/repository/docker/nwodtuhs/exegol]

[image: Pipelines (GitHub)]

The GitHub Actions platform is used on the Exegol-resources submodule. Its workflows are used to automatically update the resources (monthly) and automatically export the list of resources to the documentation.

The GitHub Actions platform is used for the documentation you’re reading. Its workflows are used to build on every commit and pull request to make sure everything works as it should, but also automatically merge changes between the various branches in order to help with development.

ReadTheDocs then builds the final version on every commit for multiple branches (main, dev, dev-images, dev-wrapper) and hosts it online at https://exegol.readthedocs.io/.

GitHub Actions

The GitHub Actions pipeline(s) need runners to operate the various jobs configured for each workflow. The Exegol project relies on self-hosted runners instead of the GitHub-hosted runners mainly for costing reasons.

At the time of writing, Tue 31 Jan 2023, the Exegol-images pipeline(s) require ARM64 and AMD64 runners in order to build, and run corresponding architectured images.

1. Setting up secrets

There are some operations that the runner will operate that will require authentication, including:
- pushing Python packages on PyPI
- pushing Docker images on Dockerhub

In order to allow this, GitHub Actions can be set up with secrets that the runner will be able to use later on. This part of the documentation shows what secrets must be set up and how.

PyPIDockerhub
API Tokens can be created in the maintainer account’s PyPI account settings [https://pypi.org/manage/account/], in the API Tokens part. The scope must be set to Project: Exegol. The tokens are linked to the personal PyPI account.

Access Tokens can be created in the maintainer account’s Dockerhub security settings [https://hub.docker.com/settings/security]. Permissions must be set to Read, Write, Delete. The tokens are linked to the personal Dockerhub account.

Once the token is created, it can be added as follows:

	For Exegol-images, go to the Exegol-images repo settings > secrets > actions [https://github.com/ThePorgs/Exegol-images/settings/secrets/actions]. At the time of writing, 11 Feb. 2023, Dockerhub secrets are named DOCKER_USERNAME and DOCKER_PASSWORD in the workflows.

	For the Python wrapper, go to the Exegol repo settings > secrets > actions [https://github.com/ThePorgs/Exegol/settings/secrets/actions]. At the time of writing, 11 Feb. 2023, the PyPI token is named PYPI_API_TOKEN in the workflows.

2. Deploying a runner

The runner can either run on macOS, Linux, or Windows, as those three operating systems are supporting by the GHA (GitHub Action) platform. x64 and ARM64 are supported for macOS and Windows, and for Linux, ARM is supported as well.

Below are the hardware requirements for each runner:

	enough RAM (to be defined)

	enough CPU (to be defined)

	enough free disk space (at least ~100GB, bare minimum)

Before deploying a GHA agent on a runner, software requirements must be met:

	Docker (or Docker Desktop for Windows and macOS)

	jq (lightweight and flexible command-line JSON processor)

LinuxmacOS
For Linux systems, Docker is required in order to have the GitHub Actions agent running.

Tip

Docker can be installed quickly and easily with the following command-line:

curl -fsSL "https://get.docker.com/" -o get-docker.sh
sh get-docker.sh

Warning

To run exegol from the user environment without sudo, the user must have privileged rights equivalent to root.
To grant yourself these rights, you can use the following command

add the sudo group to the user
sudo usermod -aG docker $(id -u -n)

"reload" the user groups
newgrp

The jq utility is also required and can be installed with the following command line:

apt install jq

Once the requirements are met, the agent can be deployed as follows (with sufficient permissions in the GitHub repository):

	go to https://github.com/ThePorgs/Exegol-images/settings/actions/runners

	click on “New self-hosted runner”

	select Linux as operating system, as well as the right architecture and follow the instructions

	when running the config.sh script, the following settings must be set

	name of the runner group: Default

	name of the runner: up to you

	additional labels: builder,tester (adapt this if the runner is to be used for only one of those actions). If the runner is an X64/AMD64, the AMD64 tag needs to be set as well. If the runner is ARM64, the right tag will be set automatically.

	name of work folder: up to you

	start the runner with the run.sh script

	(option) configure the agent as a service if it is to be run unattended/headless with sudo ./svc.sh install <user>, more info at https://docs.github.com/en/actions/hosting-your-own-runners/configuring-the-self-hosted-runner-application-as-a-service

Note

When configuring the agent as a service, it will be enabled, meaning it will start at boot. The systemctl is-enabled command should return enabled.

sudo systemctl is-enabled actions.runner.ThePorgs-Exegol-images.<runner-name>.service

In order to start the service, either reboot the runner, or use systemctl.

sudo systemctl start actions.runner.ThePorgs-Exegol-images.<runner-name>.service

[image: Created a new runner]
[image: Configuring the runner (GitHub)]
[image: Configuring the runner (Local)]

Note

Screenshots annotated with https://annotely.com/

For macOS, Docker Desktop must be installed: https://docs.docker.com/desktop/install/mac-install/.

	In Settings > Resources > Advanced, the virtual disk limit must be set to at least 100GB.

	In Settings > Resources > Advanced, allocate enough CPUs, Memory and Swap.

The jq tool can be installed as follows.

install brew
ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install)" < /dev/null 2> /dev/null

install jq
brew install jq

Xcode Command Line Tools are also required, and they can be installed with the following command line.

xcode-select --install

Once the requirements are met, the agent can be deployed as follows (with sufficient permissions in the GitHub repository):

	go to https://github.com/ThePorgs/Exegol-images/settings/actions/runners

	click on “New self-hosted runner”

	select macOS as operating system, as well as the right architecture and follow the instructions

	when running the config.sh script, the following settings must be set

	name of the runner group: Default

	name of the runner: up to you

	additional labels: builder,tester (adapt this if the runner is to be used for only one of those actions). If the runner is an X64/AMD64, the AMD64 tag needs to be set as well. If the runner is ARM64, the right tag will be set automatically.

	name of work folder: up to you

	start the runner with the run.sh script

	the agent must not be configured as a service with ./svc.sh install. Some errors have been raised when setting up the pipeline like this.

Note

TODO : how to make that service run at boot unattended without using svc.sh install?

3. Checking runners status

Go to https://github.com/ThePorgs/Exegol-images/settings/actions/runners

4. Understanding the pipelines

TODO explain the pipelines, include diagrams.

4. Common errors

1. docker login

When configuring a macOS agent as a service with ./svc.sh install, the following error was met during workflow run.

Run docker/login-action@v2
with:
 username: ***
 password: ***
 ecr: auto
 logout: true
Logging into Docker Hub...
Error: Error saving credentials: error storing credentials - err: exit status 1, out: `error storing credentials - err: exit status 1, out: `User interaction is not allowed.``

In order to avoid that error, the runner was started interactively with ./run.sh.

2. Disk space

When there’s not enough disk space, the following error is usually raised by the pipelines.

You are running out of disk space. The runner will stop working when the machine runs out of disk space. Free space left: 62 MB

Pull Requests

When handling pull requests, maintainers may need to synchronize a contributor’s fork with latests changes [https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/working-with-forks/syncing-a-fork]. In command-line, this can be achieved as follows.

git clone "git@github.com:USER/FORK" "dest_dir"
cd dest_dir
git remote add upstream "git@github.com:ThePorgs/REPO"
git fetch upstream
git checkout "TARGET_FORK_BRANCH"
git merge --no-edit upstream/"ORIGIN_BRANCH"
solve conflicts if any
git push

 Sponsors

Sponsors

[image: Capgemini logo]

Dramelac and I work at Capgemini [https://www.capgemini.com/] and we thank them for believing in the project since day 1, and for allowing us to have this personal initiative keep going.

[image: HackTheBox logo]

We thank HackTheBox for continuously supporting the community and for helping us financially to acquire the necessary hardware for supporting multiple architectures (AMD64, ARM64). Show some love at https://www.hackthebox.com/ !

[image: JetBrains logo]

We thank JetBrains for supporting this community project through its OpenSource support program. More information at https://jb.gg/OpenSourceSupport !

 Index

Index

_images/overviews_structure.png
(aarch64) (x86_64) «

P =

burp
ffuf
wordlists
gobuster
amass
wiuzz
sqlmap
ssrfmap
xsstrike
fuxploider

Container "HTB"

Graphical support
Dedicated network w/ VPN

Dedicated workspace

Exegol images

pre-installed tools pre-configured
custom configurations pre-filled history

maltego Impacket
holehe CrackMapExec
maigret BloodHound
h8mail Isassy
ghunt evil-winrm
phoneinfoga DonPAPI

infoga enum4linux-ng

toutatis coercer
carbon14 pywhisker
spiderfoot certipy

Container "Client ABC"
Host network
Shell logging

Graphical support

Custom workspace

Exegol resources

aliases dOCker

powerful shell

LIGHT

lightweight choice

FULL

NIGHTLY

bleeding edge

Container "Client XYZ"
Host network w/ VPN

Shell logging
Graphical support
Device sharing

Custom workspace

Custom configs & tools

e o)

_images/overviews_techs.png
e
python’

Entrypoint
+ Packaged
+ Open-source

4

docker

Dedicated images
* (dev) all

* (prod) all

* (prod) ad

* (prod) light

* (prod) web

()

@ piscord

Documentation

« Tickets & support
+ Community

+ Announcements

Read theDocs

Documentation

« Users

« Contributors

* Maintainers & devs

GitHub

Repos Pipelines

@ docker
« wrapper - build

-images - control Registries

« resources * versioning * production
- docs * pre-production

« history « control
+ development

Supported systems
« Linux / macOS / Windows
« AMD64 (x86_64), ARM64 (aarch64)

_images/macOS_resources_req.png
000 Docker Desktop | Upgrade plan Q Search - 3 e signin @

Preferences X

Cerel Resources File sharing

These directories (and their subdirectories) can be bind mounted into
Resources Docker containers. You can check the documentation for more

Advanced details.
File sharing

/tmp
Proxies

Network
/Users

Docker Engine
Beta features
Kubernetes /private

Software updates
/var/folders

DT e P Notcomnected toHub

_images/macOS_xquartz_config.png
X11 Preferences

Input Output Pasteboard Windows | Security

¥ Authenticate connections

Launching X11 will create Xauthority access-control keys. If the
system's IP address changes, these keys become invalid which may
prevent X11 applications from launching.

Allow connections from network clients

If enabled, Authenticate connections must also be enabled to ensure
system security. When disabled, connections from remote applications
are not allowed.

_images/step_3.png
ocee 1 nwodtuhs@rpiab: ~[Projects/exegol-gha-runner

nwodtuhs@rpidb:~/Projects $ mkdir exegol-gha-runner && cd exegol-gha-runner

rwodtuhs@rpidb:~/Projects/exegol-gha-runner § curl -o actions-runner-linux-arm64-2.301.1.tar.gz -L https://github. con/actions/runner/releases/downloa
d/v2.301.1/actions-runner-linux-arm64-2.301.1. tar gz

% Total % Received % Xferd Average Speed Time Time Time Current

Dload Upload Total Spent Left Speed

© 0 0 0 0 @ 0 0 --i--i-- —-i--i-- -]
100 83.0M 100 83.04 © 0 8075k 0 0:00:10 0:00:10 8199k
rwodtuhs@rpidb:~/Projects/exegol-gha-runner § tar xzf ./actions-runner-linux-amm64-2.301.1.tar.gz
rwodtuhs@rpidb:~/Projects/exegol-gha-runner § ./config.sh --url https://github.con/ThePorgs/Exegol-images --token

- —_) —
N/ N/ NV
1ID01 /NI EO TN

)\ RS/ 4 W G | N | /4) R 4

Self-hosted runner registration

Authentication

+ Connected to GitHub

Runner Registration

Enter the name of the runner group to add this runner to: [press Enter for Default]

Enter the name of runner: [press Enter for rpi4b] Shutdown-RaspberryPidb

This runner will have the following labels: 'self-hosted', 'Linux', 'ARMG4' /
Enter any additional labels (ex. label-1,label-2): [press Enter to skip] builder,tester

 Runner successfully added
 Runner connection is good

Runner settings
Enter name of work folder: [press Enter for _work]
J Settings Saved.

rwodtuhs@rpidb:~/Projects/exegol-gha-runner $

_images/windows_dockerdesktop_wsl_config.png
Settings Give feedback =

=5 General

I® Resources

Advanced
Proxies
Network

o WSL integration

@ Docker Engine

Kubernetes

40 Software updates

Resources WsL integration

Configure which WSL 2 distros you want to access Docker from.
Enable integration with my default WSL distro

Enable integration with additional distros:

@@ Debian

Refresh

@ Signed in

Cancel

Apply & restart

v4.25.0 - 1

_images/step_1.png
O O ations x +

< C O 8 nttpsy/github.com/ThePorgs/Exegol-images/settings/actions/runners

O Search or jump to... Pull requests Issues Codespaces Marketplace Explore

& ThePorgs [Exegol-images Public Q sponsor | <R EditPins ~ || @Watch 5 - | ¥ Fork 21 Yr star 19

<> Code (Issues &5 I Pullrequests & D Discussions () Actions [H Projects (@) Security |~ Insights £ Settings —.

& General Runners

Access Host your own runners and customize the environment used to run jobs in your GitHub Actions workflows. Learn

more about self-hosted runners.
A Collaborators and teams

©) Moderation options Runners Status

Code and automation B3 Shutdown-ZBookG5 | self-hosted | | Linux | (X84 | | builder | | tester | | amd64 o idie

¥ B £5 Shutdown-MacBookPro self-hosted | mac0S | ARMG4 | builder tester o Offline
© Tags
©® Actions
General
Runners
& Webhooks

ES Environments

E5 Pages

Security

©_Code security and analysis

_images/step_2.png
®) Add New Runner X +

C O B https://github.com/ThePorgs/Exegol-images/settings/actions/runners/new?arch=armé4&os=linux

© Moderation options

Runner image
Code and automation

¥ Branches Windows
© Tags

® Actions Architecture

& Webhooks ARMS64

ES Environments

5 Pages Download .

Security # Create a folder
$ mkdir actions-runner & cd actions-runner

@ Code security and analysis # Download the latest runner package

£ Deploy keys $ curl ~o actions-runner-linux-arm64-2.301.1.tar.gz ~L https://github. con/actions/runner/releases

/downl0ad/v2.301. 1/actions-runner-linux-arm64-2.301. 1. tar.gz

() Secrets and variables
Optional: Validate the hash

$ echo "6b9bade7296b5d613dc5aaa0ca640C16b2122a7d42e4b5I06CE7d9b5CcBBATe10 actions-runnerLinux-
Integrations arm64-2.301.1.tar.gz" | shasum -a 256 -c

83 GitHub apps. # Extract the installer

$ tar xzf ./actions-runner-linux-arn64-2.301.1.tar.gz

Configure .

Create the runner and start the configuration experience

£ Email notifications

$./config.sh —-url https://github.con/ThePorgs/Exegol-inages ——token

Last step, run it!
$./run.sh

_images/gh_roadmap.png
@ Exegol roadmap

[Board view ~ B List view

-no:status 26) X

© Considering 16
The to-do list

© Bxegol #133
New backup action

(enhancement) _help wanted -

© Bxegol #132
Encrypted volumefilesystem support
(‘enhancement) help wanted -

© Exegol-images #90
Pre-configured Firefox

(enhancement) _ help wanted -

raft

Lockdown mode

raft

CI/CD pipeline (resources)

© Exegol-docs #1
Contributors documentation

Installed tools list

© Bxegol #137
Sound sharing support

((enhancement) help wanted

raft

New import/exoort actions
+ Additem

+ New view

@ Workingonit 2
This is actively being worked on

© Exegol-images #89
Remote graphical desktop

((enhancement) help wanted
o

Maintainers documentation

{ documentation |

+ Additem

® Coming soon 1
Almost ready for beta testing or shipping

@ Exegol #136
CI/CD pipeline (wrapper)

(enhancement |

+ Additem

© Betatesting 2
Feature is almost ready for shipping

© Exegolimages #93 i
CI/CD pipeline (images)

(enhancement |
© Exegol #140

Custom container hostname

(enhancement |

+ Additem

® Shipped &
Hurray!

© Exegol-docs #3
User documentation

{ documentation |

© Exegol-images #9
ARME4 builds support

amea) (bug) (macoswi)

© Exegol-images #70
Tool history belongs to the tool

(enhancement |

© Bxegol #118
Support for dotfiles ?

(enhancement |
© Exegol #46 %

Windows implementation

(enhancement |

+ Additem

_images/hackthebox.png
N

@ HACKTHEBOX

4

_images/flawed_designs.png

_images/gh_pipelines.png
Nightly build External pull request

R Code Compliance Checks . Code Compliance Checks

image making sure tool install image making sure tool install

exists - functions are formatted as exists functions are formatted as
intended intended

success

1 Building and testing "base" i

Building and testing "base" | arch-specific images, not
arch-specific images, not | pushing them on remote '
pushing