
Exegol

Shutdown & Dramelac

Apr 17, 2024

GETTING STARTED

1 The Exegol project 3

2 Getting started 5

3 Community 7
3.1 Install Exegol . 7
3.2 Updates . 15
3.3 Frequently asked questions . 15
3.4 Tips & tricks . 19
3.5 Python Wrapper . 21
3.6 Docker images . 29
3.7 Offline resources . 30
3.8 install action . 30
3.9 start action . 31
3.10 info action . 34
3.11 exec action . 37
3.12 update action . 38
3.13 stop action . 39
3.14 restart action . 40
3.15 remove action . 40
3.16 uninstall action . 41
3.17 version action . 42
3.18 Advanced uses . 43
3.19 Tools list . 45
3.20 My resources . 46
3.21 Credentials . 51
3.22 Services list . 51
3.23 Resources . 52
3.24 Users . 53
3.25 Contributors . 55
3.26 Maintainers . 66
3.27 Sponsors . 77

i

ii

Exegol

Exegol is a community-driven hacking environment, powerful and yet simple enough to be used by anyone in day to
day engagements. Exegol is the best solution to deploy powerful hacking environments securely, easily, professionally.
No more unstable, not-so-security-focused systems lacking major offensive tools. Kali Linux (and similar alternatives)
are great toolboxes for learners, students and junior pentesters. But professionals have different needs, and their context
require a whole new design.

Exegol fits pentesters, CTF players, bug bounty hunters, researchers, beginners and advanced users, defenders, from
stylish macOS users and corporate Windows pros to UNIX-like power users.

Warning: This documentation is a work in progress. We are actively writing it, but if there are things you’d like
to be documented in priority, feel free to request in on the GitHub Repo or in the Discord server.

GETTING STARTED 1

https://github.com/ThePorgs/Exegol-docs
https://discord.gg/cXThyp7D6P

Exegol

2 GETTING STARTED

CHAPTER

ONE

THE EXEGOL PROJECT

Exegol is many things in one. Try it, and you’ll stop using your old, unstable and risky environment, no more monolithic
system that gets messier, buggier and more at risk with time.

• Python wrapper: makes everyone’s life easier. This entrypoint to the whole Exegol project handles all docker
and git operations so you don’t have to. Now’s the time to have a clean environment with one Docker container
per engagement without the effort. Exegol handles multiple images and multiple containers. GUI apps, Wi-Fi,
USB accessories, volume mounting and many more features are supported and easier to use than ever.

• Docker images: a set of pre-built docker images and dockerfiles that include a neat choice of tools, zsh plugins
for power users, pre-filled history ready to use with environment variables, awesome resources, custom configs
and many more. Images can either be built locally or pulled from the official Dockerhub registry.

• Offline resources: Tired of always having to search github for your favorite privesc enumeration script? Exegol
includes a set of resources, shared with all exegol containers and your host, including LinPEAS, WinPEAS,

3

Exegol

LinEnum, PrivescCheck, SysinternalsSuite, mimikatz, Rubeus, PowerSploit and many more.

4 Chapter 1. The Exegol project

CHAPTER

TWO

GETTING STARTED

Wanna try Exegol and join our great community? You need to install requirements first, then proceed to the OS-specific
instructions: Linux | macOS | Windows

5

Exegol

6 Chapter 2. Getting started

CHAPTER

THREE

COMMUNITY

Have a bug report or feature request? Either open an issue on the Exegol repo or open a ticket on the Exegol discord
(preferred, easier, more flexible).

Wanna chat? Need help? Join us on the Exegol discord!

3.1 Install Exegol

Installing Exegol starts with installing the entrypoint to the whole project: the Python wrapper. Once the wrapper is
installed, everything else can be managed from it.

Hint: It is strongly advised to install Exegol on a Linux host, especially when planning on using Exegol for internal
penetration tests. This is because Docker Desktop on Windows and macOS lacks a few features, mainly due to how
these operating systems run Docker containers within an internal VM that doesn’t share the host’s network interfaces
and USB accessories.

Once the wrapper is installed, the second step in setting up Exegol on a device is to install at least one Exegol image,
either with exegol start (documentation here), or with exegol install (documentation here). Both actions will
guide the user in installing an image if needed.

• Requirements

• Installation

– 1. Installation of exegol

– 2. Adding Exegol to the PATH

– 3. (Optional) Using Exegol auto-completion

– 4. Installation of the first Exegol image

7

https://github.com/ThePorgs/Exegol
https://discord.gg/cXThyp7D6P
https://discord.gg/cXThyp7D6P

Exegol

3.1.1 Requirements

The following elements are required before Exegol can be installed, whatever the host’s operating system is:

• git (Linux | macOS | Windows)

• python3 (Linux | macOS | Windows)

• docker (Linux) or Docker Desktop (macOS | Windows)

• at least 100GB of free storage recommended (a minimum of 20GB could be enough, but only for the light
image).

Additional dependencies may be required depending on the host OS.

Linux

macOS

Windows

No additional dependencies for Linux environments.

Tip: From Linux systems, Docker can be installed quickly and easily with the following command-line:

curl -fsSL "https://get.docker.com/" -o get-docker.sh
sh get-docker.sh

Warning: By default, sudo will be required when running docker, hence needed as well for Exegol. For security
reasons, it should stay that way, but it’s possible to change that. In order to run exegol from the user environment
without sudo, the user must have the appropriate rights. You can use the following command to grant them to the
current user:
add the sudo group to the user
sudo usermod -aG docker $(id -u -n)

"reload" the user groups with the newly added docker group
newgrp docker

For more information, official Docker documentation shows how to manage docker as a non root user.

Warning: Docker “Rootless mode” is not supported by Exegol as of yet. Please follow the install procedure
mentionned above.

To support graphical applications (display sharing functionality, e.g. Bloodhound, Wireshark, Burp, etc.), additional
dependencies and configuration are required:

Hint: The XQuartz requirement below is now optional if using the (beta) Graphical Remote Desktop feature instead
of X11 sharing (join our Discord to know more about this beta feature).

• XQuartz must be installed

• The XQuartz config Allow connections from network clients must be set to true

8 Chapter 3. Community

https://github.com/git-guides/install-git#install-git-on-linux
https://github.com/git-guides/install-git#install-git-on-mac
https://github.com/git-guides/install-git#install-git-on-windows
https://docs.python.org/3/using/unix.html#on-linux
https://www.python.org/downloads/macos/
https://www.python.org/downloads/windows/
https://docs.docker.com/engine/install/debian/
https://docs.docker.com/desktop/install/mac-install/
https://docs.docker.com/desktop/install/windows-install/
https://docs.docker.com/engine/install/linux-postinstall/#manage-docker-as-a-non-root-userm
https://docs.docker.com/engine/security/rootless/
https://www.xquartz.org/

Exegol

• Docker Desktop must be configured with default File Sharing (see screenshot below)

Fig. 1: macOS XQuartz configuration requirement

Tip: OrbStack for Mac is supported by Exegol wrapper from v4.2.0.

Your exegol installation cannot be stored under /opt directory when using OrbStack (due to OrbStack limitations).

This support is still in beta, feel free to open issues on GitHub if you encounter any bugs.

To support graphical applications (display sharing functionality, e.g. Bloodhound, Wireshark, Burp, etc.), additional
dependencies and configuration are required:

• Windows 10 (up to date), or Windows 11, is required

• Docker Desktop installed on the Windows host

• Docker Desktop must be configured to run on WSL2 engine (how to)

• WSLg must be installed to support graphical application

• at least one WSL distribution must be installed as well (e.g. Debian), with Docker integration enabled (see
screenshot below)

In a Windows environment, the Exegol wrapper can be installed either in a WSL shell or directly in your Windows
environment with Powershell.

3.1. Install Exegol 9

https://orbstack.dev/
https://github.com/orbstack/orbstack/issues/435
https://github.com/ThePorgs/Exegol/issues/new/choose
https://learn.microsoft.com/en-us/windows/wsl/install
https://github.com/microsoft/wslg#installing-wslg

Exegol

Fig. 2: macOS Docker Desktop resources requirement

10 Chapter 3. Community

Exegol

Fig. 3: Windows Docker Desktop WSL integration configuration

Warning: Please note that it is not advisable to use Exegol from both environments at the same time, as this could
lead to conflicts and Exegol does not officially support this configuration.

3.1.2 Installation

The installation of Exegol on Linux, macOS and Windows are very similar. It can either be installed from pip (easiest,
most user-friendly, but with a few missing features) or from sources (easy as well, fully featured).

1. Installation of exegol

Installing with pip

Installing from sources

Installing with pipx

Exegol’s wrapper can be installed from pip. While this is the easiest and most user-friendly technique, for more ad-
vanced users it is advised to install from sources, as it allows to switch from release to dev branches easily and the
auto-update feature is supported.

python3 -m pip install exegol

Warning: You may want to disable Windows Defender during the installation, as Exegol will download pre-built
remote shells (or temporarily exclude C:\Users\<username>\AppData\Local\Temp).

3.1. Install Exegol 11

Exegol

You should also add the folder C:\Users\<user>\.exegol\exegol-resources to the exclution list.

Exegol’s wrapper can also be installed from sources (with Git). The wrapper then knows how to self-update, and
switching from release and development branches is possible and very easy.

git clone "https://github.com/ThePorgs/Exegol"

Tip: If you want a light clone of Exegol (and never use the dev branch), you can use the following command:

git clone --shallow-since="2023/05/08" "https://github.com/ThePorgs/Exegol"

If you have access to docker directly as a user, you can install the requirements only for your current user otherwise the
requirements must be installed as root to run Exegol with sudo.

With sudo

Directly as user

sudo python3 -m pip install --requirement "Exegol/requirements.txt"

python3 -m pip install --user --requirement "Exegol/requirements.txt"

Exegol’s wrapper can also be installed with pipx either from sources or PyPI, which allows to install Exegol in a virtual
environment of its own.

install pipx if not already installed
python3 -m pip install pipx

from sources
pipx install git+https://github.com/ThePorgs/Exegol

packaged from PyPI
pipx install exegol

2. Adding Exegol to the PATH

Installing with pip

Installing from sources

If your pip installation is correct and functional, you have nothing more to do and you can already use the command
exegol.

If not, remember that pip installs binaries in a dedicated local folder, which then must be in the PATH environment
variable. Try to fix your pip installation: Linux | MacOS | Windows

Linux & MacOS

Windows

Once this is taken care of, the exegol wrapper can then be added to the PATHwith a symlink for direct access. This allows
to call exegol from wherever, instead of to use the absolute path. Exegol can then be used with exegol <action>
instead of python3 /path/to/Exegol/exegol.py <action>.

12 Chapter 3. Community

https://stackoverflow.com/a/62823029
https://stackoverflow.com/a/43368894
https://builtin.com/software-engineering-perspectives/pip-command-not-found

Exegol

sudo ln -s "$(pwd)/Exegol/exegol.py" "/usr/local/bin/exegol"

Once this is taken care of, the exegol wrapper can then can be added as a PowerShell command alias. Exegol can then
be used with exegol <action> instead of python3 /path/to/Exegol/exegol.py <action>.

To create the alias file correctly, open a PowerShell and place yourself in the folder where exegol is located (applicable
only for from source installations) and run the following commands:

Create $PROFILE file if it doesn’t exist:

if (!(Test-Path -Path $PROFILE)) {
New-Item -ItemType File -Path $PROFILE -Force

}

Create alias for Exegol in $PROFILE:

echo "Set-Alias -Name exegol -Value '$(pwd)\exegol.py'" >> $PROFILE

Warning: To automatically load aliases from the .ps1 file, PowerShell’s Get-ExecutionPolicy must be set to
RemoteSigned.

If the configuration is not correct it can be configured as administrator with the following command:

Set-ExecutionPolicy -ExecutionPolicy RemoteSigned

Tip: If you have installed Python3 manually and Windows opens the Microsoft store on the python page as soon as
you type python3.exe, try this:

It is possible to disable this behavior in the Windows settings: Apps > Apps & features > App execution
aliases and disable aliases for python.exe and python3.exe.

3. (Optional) Using Exegol auto-completion

Exegol (wrapper) supports auto-completion in many shell environments but there is a configuration to add (on the host)
for this feature to work.

Tip: If you have a source installation, make sure you have installed (or updated) the requirements.txt packages
before using the completer.

Important: The following configurations must be made in your host environment.

Bash

Zsh

Fish

Tcsh

PowerShell

3.1. Install Exegol 13

Exegol

You can enable Exegol auto-completion for your current user with your .bashrc or you can enable the auto-
completion system-wide with bash-completion.

Via bash-completion

Via .bashrc

To setup the auto-completion system-wide you first need to install bash-completion on your system (if not already
installed).

sudo apt update && sudo apt install bash-completion

At this point you should have a /etc/bash_completion.d/ folder. It’s in there that you can add any auto-completion
module that you want.

To generate and install the exegol completion configuration you can execute the following command with
register-python-argcomplete:

register-python-argcomplete --no-defaults exegol | sudo tee /etc/bash_completion.d/
→˓exegol > /dev/null

Add the following command in your ~/.bashrc config:

eval "$(register-python-argcomplete --no-defaults exegol)"

Tip: If you have multiple tools using argcomplete you can also use the global completion method (need bash >=
4.2).

To activate completions for zsh you need to have bashcompinit enabled in zsh:

autoload -U bashcompinit
bashcompinit

Afterwards you can enable completion by adding the following command in your ~/.zshrc config:

eval "$(register-python-argcomplete --no-defaults exegol)"

To activate completions for fish use:

register-python-argcomplete --no-defaults --shell fish exegol | source

or create new completion file, e.g:

register-python-argcomplete --no-defaults --shell fish exegol > ~/.config/fish/
→˓completions/exegol.fish

To activate completions for tcsh use:

eval `register-python-argcomplete --no-defaults --shell tcsh exegol`

To activate completions for PowerShell, first generate completion file :

register-python-argcomplete --no-defaults --shell powershell exegol > $HOME\Documents\
→˓WindowsPowerShell\exegol_completion.psm1

14 Chapter 3. Community

https://kislyuk.github.io/argcomplete/#global-completion

Exegol

Warning: If the command register-python-argcomplete is not found, that means that python pip script
are not in your PATH. You can ty to fix your pip installation: Linux | MacOS | Windows Or find the di-
rect Python script path, it might be something like: $HOME\AppData\Roaming\Python\Python311\Scripts\
register-python-argcomplete (Python311 PATH depends on the version of Python you have installed, it must
be updated to match your local setup).

Then import this completion file in $PROFILE:

echo "Import-Module '$HOME\Documents\WindowsPowerShell\exegol_completion.psm1'" >>
→˓$PROFILE

Tip: You can have Zsh style completion in PowerShell using this:

echo "Set-PSReadlineKeyHandler -Key Tab -Function MenuComplete" >> $PROFILE

4. Installation of the first Exegol image

Once the exegol wrapper is installed, you can download your first docker image with the following command:

exegol install

3.2 Updates

The whole Exegol can be updated through its own wrapper with exegol update (documentation here).

Hint: Wrappers installed with pip don’t support auto-update. The wrapper itself can then can be updated as follows.

python3 -m pip install --upgrade exegol

3.3 Frequently asked questions

Below are the frequently asked questions regarding either features, the overall project or troubleshooting matters.

• What tools are installed in Exegol?

• Unable to connect to Docker

• Can I contribute to the project?

• Can I run Exegol on a macOS?

• Can I use a VPN with Exegol?

• Can I customize Exegol?

• Can I make my own Exegol image?

3.2. Updates 15

https://stackoverflow.com/a/62823029
https://stackoverflow.com/a/43368894
https://builtin.com/software-engineering-perspectives/pip-command-not-found

Exegol

• How to install Exegol on an external drive?

• How to add a new tool?

• How do I get X11 to work on a non-Linux host?

• Can I install docker directly on my WSL2 distro instead of Docker Desktop ?

3.3.1 What tools are installed in Exegol?

The list of tools is dynamically generated for all Exegol images and available here.

3.3.2 Unable to connect to Docker

There are multiple checks to do to make sure Docker works properly.

Docker service

Docker permissions

Docker socket

Symbolic link

The Docker service must installed up and running.

• For Windows users: Docker Desktop for Windows must be up and running.

• For macOS users: Docker Desktop for Mac (or OrbStack) must be up and running.

Make sure the Docker permissions are consistent with the Exegol permissions. For instance, if you need sudo rights
to use Docker, you’ll most likely need sudo to run Exegol smoothly. See the Exegol install guidance.

The following command can be used to see the docker socket that is used by default: docker context ls.

• For OrbStack users (on macOS), the “orb socket” must be used.

• For Docker Desktop users (macOS/Windows), the “Docker desktop socket” must be used.

• For Linux users, the default socket should work.

Switching context can be done with docker context use <context>. For instance, switching from a Docker Desk-
top to OrbStack could be done with docker context use orbstack.

The following symbolic link must exist /var/run/docker.sock and point to the correct socket. Below is an example
of what it should look like.

(Host) ~ $ ls -la /var/run/docker.sock
lrwxr-xr-x 1 root daemon 38 Jul 28 09:02 /var/run/docker.sock -> /Users/someuser/.
→˓orbstack/run/docker.sock

If the link does not exist, it could be created with the following command ln -sf /Users/someuser/.orbstack/
run/docker.sock /var/run/docker.sock. This is an example for OrbStack. The command must be adapted to
the user’s context.

16 Chapter 3. Community

https://orbstack.dev/
https://orbstack.dev/
https://orbstack.dev/

Exegol

3.3.3 Can I contribute to the project?

Yes, please refer to the contributors section.

3.3.4 Can I run Exegol on a macOS?

Yes. And both CPU architectures are supported (Intel X86_64 (AMD64) and Apple Silicon M1/M2 (ARM64).

Tip: We strongly advised macOS users to replace Docker Desktop with OrbStack, allowing host network mode to
work for instance, this it’s not supported by Docker Desktop for Mac.

3.3.5 Can I use a VPN with Exegol?

Yes. And you have multiple choices.

• The “YOLO” choice: at the container creation (i.e. when “starting” a container for the first time), give all
permissions to the container so that you’re able to run openvpn in it and start the vpn. The command should look
like exegol start <container_name> <image_name> --privileged.

• The better choice: use the --vpn option at the container creation: exegol start <container_name>
<image_name> --vpn <myconf.ovpn>. It’s the easiest and more secure choice. See the start help here).

Warning: Creating a privileged container (c.f. the “YOLO” choice) exposes you to higher security risks. This
should be avoided.

3.3.6 Can I customize Exegol?

Yes, please refer to the “my-resources” documentation that explains how to automatically setup your changes to your
Exegol containers. Also, see the “wrapper’s advanced-uses” documentation to see how to edit Exegol’s conf among
other things. You could also want to make your own Exegol image

3.3.7 Can I make my own Exegol image?

Yes. You will need to create a dockerfile (e.g. CUSTOM.dockerfile) at the root of the exegol-images module next
to the other dockerfiles (i.e. /path/to/Exegol/exegol-docker-build/) containing the instructions you want the
build process to follow.

Then, run something like exegol install "myimagename" "CUSTOM" to build the image locally. See the install
documentation: install action.

3.3. Frequently asked questions 17

https://orbstack.dev/

Exegol

3.3.8 How to install Exegol on an external drive?

Exegol’s wrapper is lightweight, but it’s Docker images can take up some space, and users may not have enough room
in their internal HDD/SSD, hence the question. This usually comes down to “how can I install Docker on an external
drive?”, and the answer depends on the host.

Tip: Use a fast drive, otherwise Exegol will get real slow.

For macOS and Windows users, this can be configured in the Docker Desktop dashboard (in Settings > Resources
> Advanced > Disk image location).

3.3.9 How to add a new tool?

“Adding a tool” can mean many things. Depending on that, you’ll get a different answer. So let’s answer most of them.

If you want to add a tool:

• in the official Exegol images: refer to the contribution guidance.

• in your own custom local image: refer to the contribution guidance as well, but instead of creating a Pull Request
at the end to offer your contribution, just build the image locally with the wrapper and enjoy your custom local
image.

• in a live container: that’s your container, you can do whatever you whish in it ;)

• automatically in all containers at their creation: refer to the “my-resources” documentation.

18 Chapter 3. Community

Exegol

3.3.10 How do I get X11 to work on a non-Linux host?

X11, or X Window System, is a graphical windowing system that provides a framework for creating and managing
graphical user interfaces (GUIs) in Unix-like operating systems.

X11 sharing between an Exegol container and a host allows a graphical application running within the container to
display its GUI on the host’s X11 server. This means you can run graphical applications in Exegol containers and have
them appear as if they were running directly on the host machine. It enables the execution of GUI-based applications
in isolated containers while interacting with them through the host’s graphical interface.

For macOS users, XQuartz is needed. It’s listed in the install requirements.

Note: Exegol’s wrapper automatically starts XQuartz on macOS hosts when needed. But if for some reason it gets
manually closed by the users while a container is running, X11 sharing will not work. Restarting the container with
exegol restart <container> will restart XQuartz automatically if needed.

3.3.11 Can I install docker directly on my WSL2 distro instead of Docker Desktop ?

Yes, it’s possible to install docker directly on WSL2 rather than using Docker Desktop, but you’ll be restricted to your
WSL2 environment and its constraints.

Although Docker Desktop is incomplete, it does offer a few advantages (exegol can be used from powershell / cmd,
windows folder sharing with the exegol workstation, etc). We therefore recommend Docker Desktop as the official
support for Exegol.

We do not guarantee wrapper stability with a directly installed WSL docker.

3.4 Tips & tricks

Below are some of the tips and tricks that are good to keep in mind when using Exegol.

• Change a container’s time

• Share files or notes with targets and collaborators

• Dynamic history commands

• The best reverse shells

• Keyboard shortcuts

3.4.1 Change a container’s time

Changing a container’s time with date requires elevated permissions on the container, and messes up with the host’s
time. There is however and alternative, using faketime (see faketime ubuntu manpage) that allows to change the time
of the container easily, without needing particular permissions, without affecting the host. This is especially useful
when working with Kerberos targets that are out of sync.

Faketime manipulates the system time for a given child command. For example with zsh, a new shell is opened with
a spoofed time that will only be spoofed for this extact shell session and commands executed in it.

3.4. Tips & tricks 19

https://manpages.ubuntu.com/manpages/trusty/man1/faketime.1.html

Exegol

faketime 'YYYY-MM-DD hh:mm:ss' zsh

Note: Here is an example of how faketime can be used.

When doing Active Directory attacks against Kerberos targets, a clock skew error could be raised such as
KRB_AP_ERR_SKEW. This means the authenticating machine (operator) and the destination (Key Distribution Center,
a.k.a. KDC) are not in sync, clock-wise.

Running any Impacket with the -debug flag will print the server time. The operator can then use faketime to open a
new zsh shell with the right time and timezone and conduct the scenario as previously intended.

The following command can be used to print the time in UTC format and compare it with the server time: date --utc.

Note: careful with the timezones. If they differ between the operator and the KDC, the delta needs to be taken into
account

3.4.2 Share files or notes with targets and collaborators

The following tools or commands can be used to pop a temporary file or http server: updog, goshs, http-server,
http-put-server, ftp-server, smbserver.py. In order to shares notes during an engagement, trilium (https:
//github.com/zadam/trilium) can be used.

3.4.3 Dynamic history commands

Many commands in the pre-filled history rely on environment variables such as $DOMAIN, $USER, $PASSWORD, etc.
Those variables can be set manually or by using the profile.sh file in /opt/tools/Exegol-history/. The proper
lines can be filled and uncommented, and then the shell can be reloaded with exec zsh in order to apply the changes.
This allows users to easily look for, and use, commands in the history, without changing the values every time.

3.4.4 The best reverse shells

• shellerator can be used to generate a reverse shell command dynmically

• on the attacker’s side, a reverse shell obtained through a netcat tunnel can be improved (see ropnop.com or
0xffsec.com)

• simple alternative way to have an upgrade netcat reverse shell: use rlwrap <netcat listener command>

• instead of using netcat and “upgrade” the shell manually, pwncat-cs (calebstewart/pwncat) can be used to
obtain an even better reverse shell experience (especially with UNIX-like targets).

3.4.5 Keyboard shortcuts

• ctrl+q: when writing a command, let’s say a user misses an information (e.g. IP address). The shortcut can be
used to save the half-typed command, look for the value, and then finish the command. The user doesn’t have to
cancel the command, look for the info, and write the command all over again. This is known as the push-line
feature (see sgeb.io).

• ctrl + r: look for something in the history

• ctrl + t: look for a file or directory with a fuzzy finder

• ctrl + a: move to the beginning of the line

20 Chapter 3. Community

https://github.com/fortra/impacket
https://github.com/zadam/trilium
https://github.com/zadam/trilium
https://blog.ropnop.com/upgrading-simple-shells-to-fully-interactive-ttys/
https://0xffsec.com/handbook/shells/full-tty/
https://github.com/calebstewart/pwncat
https://sgeb.io/posts/bash-zsh-half-typed-commands/

Exegol

• ctrl + e: move to the end of the line

• ctrl + ←: move one word backward

• ctrl + →: move one word forward

• ctrl + l: clear the screen

3.5 Python Wrapper

The Exegol project regroups many things (docker images, offline resources, custom configurations, aliases, history
commands, multi-architecture support and many others). In order to make all the tech involved easy to use, and provide
some unique entrypoint to the whole setup, a Python wrapper was created.

The Python wrapper handles all Docker and Git operations, can manage multiple images and containers at once and
give the user the best experience possible, suited for beginners as well as advanced people.

The wrapper knows multiple actions.

• Install an image : exegol install

• Create/start/enter a container : exegol start

• Show info on containers and images : exegol info

• Stop a container : exegol stop

• Remove a container : exegol remove

• Uninstall an image : exegol uninstall

• Get help and advanced usage : exegol --help

• Help and examples can be obtained for each action directly from the wrapper with the following command:
exegol <action> -h (action: install/start/stop/etc.).

All actions are documented in the exegol-wrapper part of this doc (e.g. info, start, version, . . .)

Below is a, non-exhaustive, list of what the wrapper supports:

Note: Exegol uses Docker images and containers. Understanding the difference is essential to understand Exegol.

• image: think of it as an immutable template. They cannot be executed as-is and serve as input for containers.
It’s not possible to open a shell in an image.

• container: a container rests upon an image. A container is created for a certain image at a certain time. It’s
possible to open a shell in a container. Careful though, once a container is created, updating the image it was
created upon won’t have any impact on the container. In order to enjoy the new things, a new container must be
created upon that updated image.

3.5. Python Wrapper 21

Exegol

3.5.1 Features

The Exegol wrapper has many features to automatically and transparently manage different configurations to facilitate
the use and creation of docker containers.

X11 sharing (GUI)

By default exegol configures the new container and host to allow the execution to the display of graphical window
launched from an exegol container. This is achieved through X11 sharing.

For example, if bloodhound is launched in an exegol container, the graphical window (GUI) will be displayed in the
user’s graphic environment.

This feature can be disabled manually with the option --disable-X11 of the start action.

Desktop

On some systems, it may be difficult to have or share an X11 environment. Some users prefer to have a full graphical
desktop environment rather than just graphical applications.

To meet this need, Exegol is able to host a complete graphical environment within its container since version 4.3.0 of
the wrapper and 3.1.2 of the images.

This environment can then be made available to others in a variety of ways. The default protocol is currently HTTP,
but the user can change the configuration to use the VNC alternative.

This feature can be enabled manually with the option --desktop of the start action.

Tip: The default behavior and configuration of the desktop mode can be changed in the configuration of Exegol.

Workspace

Exegol always creates within a container a persistent workspace (even after deleting the container) and shared with
the host.

By default a folder will be created on the host and shared with the container. This folder will be created in ~/.exegol/
workspaces/ with the name of the exegol container.

Tip: The default location of workspace volumes can be changed in the configuration of Exegol.

The user can also create an Exegol container with an existing custom workspace folder (with already existing data)
regardless of its location in the file system.

See the options -w WORKSPACE_PATH and -cwd of the start action for more details.

22 Chapter 3. Community

Exegol

Update-fs

The root user is used by default in Exegol containers which poses problems of permissions when accessing the project
documents from the host. To remedy this without compromising, a shared permission system exists allowing the host
user to have read and write access to files created from the container.

This system is automatically activated when a new default workspace is created.

Warning: When the user uses an existing custom folder as workspace, this system is disabled by default! This
feature can be enabled by default by changing the configuration of Exegol.

Its activation is possible manually (see the option --update-fs of the start action) but it will lead to the modifi-
cation of the folder and its sub-folders permissions (as g+rws).

If the user does not have the rights to perform such an operation, a sudo command will be proposed to the user that
he will have to execute manually to apply the necessary permissions for the proper functioning of the functionality
(as chgrp + g+rws).

Tip: When the default configuration of this feature is changed and the update will be enabled by default, the option
--update-fs can still be used to manually disable the feature in specific cases.

OpenVPN connection

Exegol supports OpenVPN tunnel configuration to automatically establish a VPN tunnel at container startup.

Exegol supports certificate authentication (all files should preferably be included in a single ovpn file) but also
user/password authentication through an authentication file (to allow non-interactive and transparent authentication).

Tip: A folder can also be used in the case of a multi-file configuration (with relative paths!) and the configuration
file must have the .ovpn extension (Only one .ovpn file will be loaded by exegol).

See the options --vpn VPN and --vpn-auth VPN_AUTH of the start action for more details.

Tip: In case of problem, to troubleshoot a VPN connection, the log of OpenVPN can be retrieved within the container
in the /var/log/exegol/vpn.log file

Shell logging

Within the framework of a mission, it is necessary to log all actions performed during a pentest, red team etc. To meet
this need, Exegol has a feature to automatically record everything that is displayed (stdout / stderr) but also all entries
(stdin).

See the option --log of the start action to enable the feature.

Hint: When the option is enabled upon creation of a new container, all shells created for this container will be
automatically logged.

3.5. Python Wrapper 23

Exegol

If the container was created without this option, the shells can still be logged individually by adding the option in the
start command of each shell.

The date and time of each command is displayed thanks to the PS1 of zsh.

The logs are automatically saved in the /workspace/logs folder. Each log file is automatically compressed with
gzip at the end of the session to optimize disk space. The automatic compression of log files can be disabled manually
with the start action --log-compress parameter or change the default behavior in the Exegol configuration file.

Hint: When the default configuration of the log compression is changed from the config file and the feature will be
disabled by default, the option --log-compress can still be used to manually enable the feature in specific cases.

Warning: The logs should NOT be consulted from the exegol container but from the host to avoid loops and
duplication of data in the logs.

There are (since exegol images version 3.0.0) different methods of shell logging. The shell logging method can be
selected manually with the start action --log-method parameter or by default in the configuration file of Exegol.

asciinema (default)

script

The shell logging method asciinema is available from exegol images version 3.0.0. This new mode allows to consult
sessions in video format taking into account the interactive environment. It is also possible to manually upload and
share recordings, useful for demonstrations for example

Here is a quick demonstration:

Tip: Logs in .gz format can be replay directly without unpacking them with the command: gunzip -c
<filename_shell.asciinema.gz> | asciinema play -

Hint: To display the whole session without the “video” mode, it is possible to use the command: asciinema cat
<filename_shell.asciinema>

Warning: Major disadvantage of this method, to view the logs from your host, you must install asciinema on
your host machine to replay or share your records.

Tip: When you share or play an asciinema video, you can copy and paste any command/text it contains.

script is the “classic” method of session logging, it was also the only option available before version 3.0.0 of exegol
images. This method simply records all incoming (stdin) and outgoing (stdout/stderr) shell actions in a file.

Tip: Logs in .gz format can be viewed directly without unpacking them with the zcat, zgrep, zdiff or zmore
command!

24 Chapter 3. Community

Exegol

Warning: Shell logging saves EVERYTHING including keyboard shortcuts, display refreshes, etc.

Complex graphical environments (such as tmux) can make it difficult to read the logs.

Shared network

By default, containers created by Exegol are in host mode which means that the network interfaces of the host are
shared with the container.

This configuration is useful to:

• dynamically open ports and services

• have a low level access on a physical network (some operation might need privileged mode)

• share a unique ip address on the target network

• share a MAC address on the target network (to be considered as a single physical machine)

This mode can be disabled with the option --disable-shared-network of the start action to create a dedicated and
isolated network instead.

Tip: When host network sharing is disabled, ports can be to expose services on the host machine’s networks.

Warning: This mode is only available on Linux installations! Windows and MacOS installations are subject to
the constraints and limitations of Docker Desktop .

You can still use the port publishing feature instead.

Shared timezones

For convenience and precision in the date and time of the logs of each command, exegol allows to share the timezone
of the host in the container.

This feature is active by default and can be disabled with the option --disable-shared-timezones of the start
action.

Exegol-resources

To save time and have at hand many tools, scripts and other resources, exegol maintains a repository exegol-resources
contains many updated tools that are available to the host and exegol containers.

This module is not mandatory and can be downloaded later.

Hint: If an antivirus is present on your host, be careful to exclude the destination folder of the exegol-resources
module before downloading it.

This feature is active and shared by default and can be disabled with the option --disable-exegol-resources of
the start action.

3.5. Python Wrapper 25

https://docs.docker.com/network/network-tutorial-host/#prerequisites

Exegol

My-resources

The my-resources feature is a space dedicated to the user and shared with all the containers. This space allows to store
configurations and to install personal tools.

More details on the functionality of the wrapper here and how to take advantage of the customization system here.

Volume sharing

For specific needs, the exegol wrapper allows to add additional custom volumes (type bind mounts) when creating an
exegol container.

See the option --volume VOLUMES of the action start for more details.

Port sharing

When the host network is not shared, it is still possible to publish specific ports to expose services or port ranges.

Hint: This configuration is compatible even with installations based on Docker Desktop.

This feature allows the user to select:

• a specific network interface (for example 127.0.0.1) or by default all interfaces (0.0.0.0).

• the port to open on the host interface.

• the destination port to be linked in the container.

• the protocol to use, docker supports TCP, UDP and SCTP protocols (default is TCP).

See the option --port PORTS of the start action for more details.

Env. variables

Exegol can configure custom environment variables defined by the user.

When the environment variables are defined at the first time of the container creation, these variables will be:

• accessible in the container by all processes

• present during the whole lifetime of the container

The environment variables can be defined when opening a shell in an existing container and will be available only in
the user’s shell until it is closed.

See the option --env ENVS of the start action for more details.

26 Chapter 3. Community

Exegol

Device sharing

For the needs of some applications running on physical hardware (such as proxmark3), exegol can supply the container
with one or more physical devices.

See the option --device DEVICES of the start action for more details.

Warning: This feature is only available on Linux installations!

Windows and MacOS installations are subject to the constraints and limitations of Docker Desktop.

Custom hostname

In some environments with OPSEC requirements, it may be necessary to change the hostname of your exegol container.

See the option --hostname HOSTNAME of the start action for more details.

Comments

To add more context information about an exegol container, it is possible to add comments to each Exegol container.
The comment of an exegol container can be displayed with the command exegol info <container_name>

See the option --comment COMMENT of the start action for more details.

Capabilities

Exegol supports adding Linux capabilities to the Exegol container to perform tasks that require administrative rights
without allowing everything.

This feature gives control to the user to configure his container but giving administrator rights remains a dangerous
practice and should be used by experienced users only.

For more details on the capabilities supported by docker check here.

Warning: Not all Linux capabilities are allowed by the Exegol wrapper, here is the list of available capabilities:

NET_ADMIN, NET_BROADCAST, SYS_MODULE, SYS_PTRACE, SYS_RAWIO, SYS_ADMIN,
LINUX_IMMUTABLE, MAC_ADMIN, SYSLOG

For all other needs, consider the privileged mode.

Privileged

For particular needs, it is sometimes necessary to have privileged rights to perform certain actions. If Exegol does
not allow you to have specifically the rights necessary, you can configure your container in privileged mode to get full
administrator rights.

Warning: This configuration is particularly dangerous because it gives the container full admin control over the
kernel of the host machine.

Use this option only if you know exactly what you are doing!!

3.5. Python Wrapper 27

https://docs.docker.com/desktop/faqs/#can-i-pass-through-a-usb-device-to-a-container
https://docs.docker.com/engine/reference/run/#runtime-privilege-and-linux-capabilities

Exegol

If the need is specifically identified, consider adding capabilities instead!

See the option --privileged of the start action for more details.

Multi-architecture

Exegol supports ARM64 architecture (in addition to the classic AMD64) since version 4.1.0 of the wrapper and 3.0.0
of the images.

This support allows you to fully use exegol on hardware equipped with an ARM processor (such as Mac M1 / M2 but
also some Raspberry Pi).

Warning: Exegol only supports 64-bit ARM architecture! If your ARM processor supports 64-bit, make sure
your OS is also installed in 64-bit version to use exegol!

Tip: For experienced users or developers, it is possible to explicitly modify the architecture used by the Exegol wrapper
with the general option --arch ARCH.

But be careful, the modification of this parameter can lead to malfunctions!

Local image building

The wrapper allows users to locally build their images from the exegol-images sources.

More information in the advanced uses section.

Remote image pulling

To save time, pre-built images are available for download from DockerHub. These images can be downloaded and
installed / updated from the exegol wrapper with the install and update actions.

Command execution

The Exegol wrapper does not only allow the opening of interactive shells, it is also possible to execute single commands
in several ways.

Tip: To see the execution logs of the command, the user must add the parameter -v.

The details of this functionality are detailed in the exec action.

28 Chapter 3. Community

Exegol

Daemon execution

One of the execution modes can be in the background like a daemon service. In this way the wrapper executes
the user’s command, for example an application such as bloodhound. The wrapper launches the task in an exegol
container and finishes immediately without occupying the user’s terminal, leaving the application open.

See the option --background of the exec action for more details.

Temporary containers

Another feature of the exec action is the execution in a temporary container.

In this mode, a temporary container will be created and dedicated to the execution of the command specified by the
user.

This mode can be useful to run a given command with the most up-to-date image already installed on the host, for any
test or for special privacy needs.

See the option --tmp of the exec action for more details.

3.6 Docker images

The Docker images are the heart of the Exegol project. A neat choice of tools, configurations, aliases, history com-
mands, and various customizations are prepared in multiple images adapted for multiple uses: web hacking, Active
Directory, OSINT (Open Source INTelligence), etc.

All images are available on the official Dockerhub registry. This allows to offer pre-built, compressed images, so that
users don’t have to build their own image, but users that choose to do so can. Pulling pre-built images, or building one,
can be done with exegol install (documentation here).

Image name Description
full Includes all the tools supported by Exegol (warning: this is the heaviest image)
ad Includes tools for Active Directory / internal pentesting only.
web Includes tools for Web pentesting only.
light Includes the lightest and most used tools for various purposes.
osint Includes tools for OSINT.
nightly (for developers and advanced users) contains the latest updates. This image can be unstable!

Note: Exegol uses Docker images and containers. Understanding the difference is essential to understand Exegol.

• image: think of it as an immutable template. They cannot be executed as-is and serve as input for containers.
It’s not possible to open a shell in an image.

• container: a container rests upon an image. A container is created for a certain image at a certain time. It’s
possible to open a shell in a container. Careful though, once a container is created, updating the image it was
created upon won’t have any impact on the container. In order to enjoy the new things, a new container must be
created upon that updated image.

3.6. Docker images 29

https://hub.docker.com/repository/docker/nwodtuhs/exegol

Exegol

3.7 Offline resources

Exegol’s “offline resources” are a neat choice of standalone tools and scripts that are often used during penetration
tests, CTFs and red-teams, like LinPEAS, WinPEAS, LinEnum, PrivescCheck, SysinternalsSuite, mimikatz, Rubeus,
PowerSploit and many more. Exegol users don’t have to download those resources again every time they’re needed
anymore. Everything is managed by the wrapper and they are shared with every container (at /opt/resources).

3.8 install action

This action can be used to install an Exegol image. At least one Exegol image is required to create and start a container
and enjoy Exegol.

When this action is used, the image can either be:

• downloaded (i.e. “pulled” in Docker terms) from the official Dockerhub registry. In this case, a compressed and
pre-built image is downloaded in the form of layers, and then uncompressed.

• built locally by following the instructions of a Dockerfile offered on the Exegol-images GitHub repo.
Here again, no need to download the dockerfile manually, all of them are already at /path/to/Exegol/
exegol-docker-build/.

Hint: The install action can be used without any particular argument or option. the wrapper will then enter in an
interactive TUI (Text-based User Interface) mode where the user will be asked to choose what image to install or build.

exegol install

3.8.1 Options

Option Description
IMAGE Optional positional argument to indicate the image to install (if downloading), or the name of the

image to build (if building locally).
BUILD_PROFILEOptional positional argument to indicate the source profile to use if building locally.
--build-log Write logs to the path specified if building locally.
--build-pathCustom path to the dockerfiles and sources.

3.8.2 Command examples

#Install or build interactively an exegol image
exegol install

#Install or update the full image
exegol install full

#Build interactively a local image named myimage
exegol install myimage

(continues on next page)

30 Chapter 3. Community

https://hub.docker.com/repository/docker/nwodtuhs/exegol
https://github.com/ThePorgs/Exegol

Exegol

(continued from previous page)

#Build the myimage image based on the full profile and log the operation
exegol install myimage full --build-log "/tmp/build.log"

3.9 start action

This action can be used to start a container. At least one Exegol image is required to create and start a container and
enjoy Exegol. Installing an image can be done with exegol install (documentation here).

When this action is used, the following process is applied:

• if no Exegol image is installed, the user is asked to specify which one to install of build, and the process continues

• then, if the container to start doesn’t already exist, it is created based on an Exegol image and a few settings to
specify, and the process continues

• then, the container is started and a shell is opened

Hint: The start action can be used without any additional argument or option. the wrapper will then enter in an
interactive TUI (Text-based User Interface) mode where the user will be asked to choose a few settings.

exegol start

3.9.1 Options

A single option exist to target an Exegol container. If this container exists, it will be started if it is not already the case
and a shell will be spawned to offer an interactive console to the user

Option Description
CONTAINER Tag used to target an Exegol container

Many options exist to customize the creation of exegol container.

Tip: The default options of some commands can be changed in the exegol configuration file.

3.9. start action 31

Exegol

Global options

Option Description
IMAGE Tag of the exegol image to use to create a new exegol container
-w WORKSPACE_PATH,
--workspace
WORKSPACE_PATH

The specified host folder will be linked to the /workspace folder in the container.

-cwd, --cwd-mount This option is a shortcut to set the /workspace folder to the user’s current working
directory (pwd).

-fs, --update-fs Modifies the permissions of folders and sub-folders shared in your workspace to access
the files created within the container using your host user account. (default: Disabled)

-V VOLUMES, --volume
VOLUMES

Share a new volume between host and exegol (format: –volume
/path/on/host/:/path/in/container/[:ro|rw]).

-p PORTS, --port
PORTS

Share a network port between host and exegol (format: –port
[<host_ipv4>:]<host_port>[:<container_port>][:<protocol>]. This configuration
will disable the shared network with the host.

--hostname HOSTNAME Set a custom hostname to the exegol container (default: exegol-<name>)
--cap CAPABILITIES (dangerous) Capabilities allow to add specific privileges to the container (e.g. need

to mount volumes, perform low-level operations on the network, etc).
--privileged (dangerous) give extended privileges at the container creation (e.g. needed to mount

things, to use wifi or bluetooth)
-d DEVICES, --device
DEVICES

Add host device(s) at the container creation (example: -d /dev/ttyACM0 -d
/dev/bus/usb/).

--disable-X11 Disable X11 sharing to run GUI-based applications. (default: Enabled)
--disable-my-resourcesDisable the mount of the shared resources (/opt/my-resources) from the host

(/home/dramelac/.exegol/my-resources) (default: Enabled)
--disable-exegol-resourcesDisable the mount of the exegol resources (/opt/resources) from the host

(/home/dramelac/Documents/tools/Exegol/exegol-resources) (default: Enabled)
--disable-shared-networkDisable the sharing of the host’s network interfaces with exegol (default: Enabled)
--disable-shared-timezonesDisable the sharing of the host’s time and timezone configuration with exegol (default:

Enabled)

Virtual desktop

In addition to the X11 sharing functionality, Exegol can generate its own graphical environment and make it available
to the user in a variety of ways. By default, a web interface gives users access to their own containerized graphical
desktop.

Option Description
--desktop Enable or disable the Exegol desktop feature (default: Disabled)
--desktop-configConfigure your exegol desktop (vnc or http) and its exposure (format: proto[:ip[:port]]) (default:

http:127.0.0.1:<random>)

32 Chapter 3. Community

http:127.0.0.1

Exegol

VPN

An additional feature of Exegol is the VPN tunnel option (OpenVPN). Just provide an ovpn configuration to exegol
and the container will take care of starting the tunnel at each startup.

Option Description
--vpn VPN Setup an OpenVPN connection at the container creation (example: –vpn

/home/user/vpn/conf.ovpn)
--vpn-auth
VPN_AUTH

Enter the credentials with a file (first line: username, second line: password) to establish the VPN
connection automatically (example: –vpn-auth /home/user/vpn/auth.txt)

Warning: All the options seen previously are taken into account only for the creation of a new container. It is
not possible to modify the configuration of an existing container. These options will be ignored if a container with
the same name already exists.

Shell logging

One of the functions of exegol very useful in a professional context is the shell logging. This feature allows the user to
record everything that happens in the exegol container (commands typed and responses).

Option Description
-l, --log Enable shell logging (commands and outputs) on exegol to /workspace/logs/ (default: Disabled)
--log-method Select a shell logging method used to record the session (default: asciinema)
--log-compress Enable or disable the automatic compression of log files at the end of the session (default:

Enabled)

Tip: When the -l/--log option is enabled during the creation of a new container, all future shells will be automat-
ically logged for this container.

Session specific

The options specific to the start of the interactive session

Option Description
-e ENVS,
--env
ENVS

And an environment variable on Exegol (format: –env KEY=value). The variables configured during
the creation of the container will be persistent in all shells. If the container already exists, the variable
will be present only in the current shell.

-s SHELL,
--shell
SHELL

Select a shell environment to launch at startup (default: zsh)

Tip: The environment variables configured with --env ENVS during the creation of a new container will be available
to all processes of the container during the entire life cycle of the container.

3.9. start action 33

Exegol

3.9.2 Command examples

Start interactively a container
exegol start

Create a demo container using full image
exegol start demo full

Spawn a shell from demo container
exegol start demo

Create a container test with a custom shared workspace
exegol start test full -w "./project/pentest/"

Create a container test sharing the current working directory
exegol start test full -cwd

Create a container htb with a VPN
exegol start htb full --vpn "~/vpn/lab_Dramelac.ovpn"

Create a container app with custom volume
exegol start app full -V "/var/app/:/app/"

Get a shell based on tmux
exegol start --shell tmux

Share a specific hardware device (like Proxmark)
exegol start -d "/dev/ttyACM0"

Share every USB device connected to the host
exegol start -d "/dev/bus/usb/"

3.10 info action

The info action aims at displaying all the information specific to the Exegol project on the current system. This action
can also be used by targeting a specific container to display its configuration in detail.

Depending on the verbosity level specified in the command-line, the information displayed will be more or less detailed
accordingly.

Standard (default)

Verbose

Advanced

Debug

exegol info

• List of available Exegol Images

– Name of the image

34 Chapter 3. Community

Exegol

– Size of each image (disk space if the image is installed, otherwise its compressed size to download for
installation)

– Status of each image

∗ Not installed (Image available for download from dockerhub)

∗ Up to date (The latest version of the image is installed and ready to be used)

∗ Update available (A new version is available for download on dockerhub)

∗ Outdated (Old version of an image that has been updated since)

∗ Local image (Locally built image)

∗ Discontinued (if your image is no longer available on dockerhub)

• List of Exegol Containers

– Name of each container

– Container status (Stopped or running)

– Image name (Exegol image used as a base to create the container)

– Configurations (Display of non-default configurations)

exegol info -v

In the verbose mode, the following additional elements are displayed. Everything from the lower verbosity level is still
displayed.

• Enumerate every user configuration (see details here)

• In the list of available Exegol Images

– Image ID

– Build date

– Image architecture (AMD64 / ARM64)

• In the list of Exegol Containers

– Container id

– Full configuration

– List of non-technical volumes

– List of Devices

– List of Ports (Applicable if network sharing with host is not enabled)

– List of custom environment variables

exegol info -vv

In the advanced mode, the following additional elements are displayed. Everything from the lower verbosity levels is
still displayed.

• Enumerate the settings from the user configuration at ~/.exegol/config.yml (see details here)

• List the different exegol modules

– Modules name

– Their update status

3.10. info action 35

Exegol

– Their git branch (if applicable)

exegol info -vvv

In the debug mode, everything from the lower verbosity levels is still displayed, as well as logs from internal methods
and functions. Those logs can be useful for maintainers and developers in case of bug, or for making sure everything
works properly.

3.10.1 Options

The info action does not have many parameters, its use is relatively simple. This action can either be used to gather
general information (available images, containers, user configs, etc.), or gather information about a specific container
and display its configuration.

Option Description
CONTAINER Optional positional argument to indicate the container tag of which to display the configuration.

Global options can still be used, like for any action.

Option Description
-h, --help Show the help message of any action
-v, --verbose Verbosity level (-v for verbose, -vv for advanced, -vvv for debug)
-q, --quiet Show no information at all
-k, --insecure Allow insecure server connections for web requests, e.g. when fetching info from Docker-

Hub (default: Secure)
--offline Run exegol in offline mode, no request will be made on internet (default: Disable)
--arch {arm64,
amd64}

Overwrite default image architecture (default: host’s arch)

3.10.2 Command examples

Print containers and images essentials information:
exegol info

Print the detailed configuration of the "demo" container:
exegol info demo

Print verbose information:
exegol info -v

Print advanced information:
exegol info -vv

Print debug information:
exegol info -vvv

36 Chapter 3. Community

Exegol

3.11 exec action

This action allows to run a single command in a single container instead of loading a full interactive shell.

When this action is used it is possible to execute a command either in:

• a temporary container created especially to execute the command, and automatically deleted at the end of the
execution: the name of an exegol image must be provided from which a temporary container will be created

• a standard Exegol container (already existing, or not): the name of an exegol container must then be provided.
This container will be created in interactive mode if it does not already exist

The executed command can be executed either:

• in the background mode (i.e. like a daemon): exegol terminates immediately after the command is launched
and does not wait for its execution to be completed. No process is left hanging (useful when running GUI apps
for instance).

• in standard mode: exegol will wait for the end of the process to stop the container (and delete it if

Tip: In standard execution mode, it is possible to ask exegol to display the command output (stdout/stderr) in the
terminal by adding -v parameter.

3.11.1 Options

Since the exec action can also create containers, it shares the same parameters as the start action.

There are also additional parameters, unique to the exec action:

Option Description
CONTAINER
or IMAGE

This option indicates the container name to use to execute the command. If the --tmp parameter
is used, this name will be used to target an image.

COMMAND Single command to execute in the container.
-b,
--background

Executes the command in background as a daemon.

--tmp Creates a dedicated and temporary container to execute the command.

3.11.2 Command examples

Execute the command bloodhound in the container demo:
exegol exec demo bloodhound

Execute the command 'nmap -h' with console output in the container demo:
exegol exec -v demo 'nmap -h'

Execute a command in background within the demo container:
exegol exec -b demo bloodhound

Execute the command bloodhound in a temporary container based on the full image:
exegol exec --tmp full bloodhound

(continues on next page)

3.11. exec action 37

Exegol

(continued from previous page)

Execute a command in background with a temporary container:
exegol exec -b --tmp full bloodhound

Execute Wireshark in background, in a privileged temporary container:
exegol exec --background --tmp --privileged "nightly" "wireshark"

Execute the command wireshark with network admin privileged:
exegol exec -b --tmp --cap NET_ADMIN full wireshark

3.12 update action

3.12.1 The update process

The exegol wrapper has an update action dedicated to updating the different modules (wrapper, resources, etc.) of the
project as well as the (docker) Exegol images.

Modules updates

This action make sure the local copies of the following repositories are up to date:

• Exegol (wrapper code). If the wrapper has been installed with Pip, it will not be able to self-update, updating the
package through Pip will be required (e.g. python3 -m pip install --upgrade exegol).

• Exegol-images (docker building files)

• Exegol-resources (offline resources, exegol-resources). This module is optional, and users can choose to in-
stall/update it at any time.

Tip: When running exegol update -v, the user will be able to choose from what branch them module should be
synchronized with, allowing to switch easily between release and dev versions.

Images updates

Once the local code base is updated, the wrapper compares the installed Exegol images with those offered on the
Dockerhub registry. If no parameters have been provided at command-line, an interactive selection will be possible to
choose the images to update (if updates are available).

Hint: Older versions of images will be automatically deleted if they are no longer used by any container and if a newer
version of the same image is installed. This automatic deletion behavior is a default configuration that can be modified
in the configuration file if needed, but it’s advised not to change it as disk space is not unlimited and Exegol image can
take up to 30GB.

38 Chapter 3. Community

https://github.com/ThePorgs/Exegol
https://github.com/ThePorgs/Exegol-images
https://github.com/ThePorgs/Exegol-resources

Exegol

3.12.2 Options

The options of the update action are the following.

Option Description
IMAGE This option specifies what image to update.
--skip-git Skip modules updates.
--skip-images Skip images updates.

3.12.3 Command examples

Update interactively an exegol image:
exegol update

Update the full image:
exegol update full

Update the full image without updating exegol modules:
exegol update --skip-git full

Update exegol modules and have the option to change branch without updating docker␣
→˓image:
exegol update -v --skip-images

3.13 stop action

The purpose of the stop action is to stop one or more Exegol containers.

If these containers have a VPN configuration, shutting down the container will cause the VPN tunnel to be disconnected.

3.13.1 Options

The options of the stop action are limited to selecting the container(s) to be stopped.

Option Description
CONTAINER Tag used to target one or more Exegol containers

3.13.2 Command examples

Stop interactively one or more containers:
exegol stop

Stop the "demo" container:
exegol stop "demo"

(continues on next page)

3.13. stop action 39

Exegol

(continued from previous page)

Stop the "demo", "test" and "dev" container:
exegol stop "demo" "test" "dev"

3.14 restart action

The purpose of the restart action is to stop and directly restart an Exegol container.

If these containers have a privileged or device configuration, restarting the container will refresh the available
devices inside the container.

Warning: Restarting a container will reset the hosts, resolv.conf files (and probably more).

3.14.1 Options

The options of the restart action are limited to selecting the container to be restarted and some starting options that can
be also found on the start action.

Option Description
CONTAINER Tag used to target the Exegol containers to restart

3.14.2 Command examples

Restart interactively one container:
exegol restart

Restart the "demo" container:
exegol restart "demo"

3.15 remove action

The purpose of the remove action is to remove one or more Exegol container.

If the deleted container was using an outdated image, the wrapper will (by default) try to delete that outdated image
automatically (unless this default behavior is changed in the exegol configuration file, which is not advised since disk
space is not limited and Exegol images can take up to 30GB).

When deleting the container, the wrapper will check if the content of the /workspace volume is empty. If the workspace
is empty, exegol will automatically delete the folder on the host, otherwise it will explicitly ask the user if the
workspace content should be deleted or not.

40 Chapter 3. Community

Exegol

3.15.1 Options

The options of the remove action are limited to selecting the container(s) to be removed and forcing the removal without
asking the user for interactive confirmation.

Option Description
CONTAINER Tag used to target one or more Exegol containers
-F,
--force

Remove container without interactive user confirmation (confirmation will still be required for remov-
ing non-empty workspaces).

3.15.2 Command examples

Remove interactively one or more containers:
exegol remove

Remove the "demo" container:
exegol remove "demo"

Remove the "demo", "test" and "dev" container without asking for user confirmation:
exegol remove -F "demo" "test" "dev"

3.16 uninstall action

The purpose of the uninstall action is to remove one or more Exegol images.

Warning: The wrapper will try to delete the selected exegol images but this can only work if the selected images
are not used by any container anymore. A container based on an image that doesn’t exist anymore cannot run.

3.16.1 Options

The options of the uninstall action are limited to selecting the image(s) to be removed, and forcing the removal
without asking the user for interactive confirmation.

Option Description
IMAGE Tag used to target one or more Exegol images
-F, --force Remove image without interactive user confirmation.

3.16. uninstall action 41

Exegol

3.16.2 Command examples

Remove interactively one or more containers:
exegol uninstall

Remove the "full" container:
exegol uninstall "full"

Remove the "full", "ad" and "web" container without asking for user confirmation:
exegol uninstall -F "full" "ad" "web"

3.17 version action

The version action is mostly used for debugging purposes, it only displays information about the Exegol setup on the
system.

In debug mode (-vvv), it also displays information about the system and wrapper installation context.

3.17.1 Options

The options available for the version action are the global options that affect the behavior of all exegol actions.

Option Description
-h, --help Show the help message of any action
-v, --verbose Verbosity level (-v for verbose, -vv for advanced, -vvv for debug)
-q, --quiet Show no information at all
-k, --insecure Allow insecure server connections for web requests, e.g. when fetching info from Docker-

Hub (default: Secure)
--offline Run exegol in offline mode, no request will be made on internet (default: Disable)
--arch {arm64,
amd64}

Overwrite default image architecture (default: host’s arch)

3.17.2 Command examples

Show version information
exegol version

Show version and system information
exegol version -vvv

42 Chapter 3. Community

Exegol

3.18 Advanced uses

• Exegol home directory

• Exegol configuration

• My-resources

• Local builds

3.18.1 Exegol home directory

The ~/.exegol folder exists in the user’s home folder to centralize “exegol resources”, “my-resources”, volumes and
also the configuration file.

• The configuration file (YAML) is located at ~/.exegol/config.yml and is generated by the wrapper during
the first execution, with the default configurations.

• By default, every exegol container has a workspace volume. If the path of this volume is not specified by the
user (see start parameters), a folder with the name of the container will be created in the “private workspace”
folder. By default, this folder is located at ~/.exegol/workspaces/.

3.18.2 Exegol configuration

The Exegol wrapper is configured with many default settings. Most of them can be modified with a simple argument.
For productivity purposes, setting a different default behavior once and not have to add the same options everytime is
interesting. For this exact purpose, a configuration file exists that allows users to persistently change the behavior and
operations to be performed by default.

The user configuration currently in place can be viewed with the command: exegol info -v. More information on
the info page.

Within the ~/.exegol/config.yml file, several settings can be configured to customize the Exegol experience, all
distributed in multiple sections below.

Volumes

Config

The volume section allows to change the default path for various volumes.

Warning: Volume path can be changed at any time but already existing containers will not be affected by the
update and will keep the original paths they were created with.

• my_resources_path: the “my-resources” volume is a storage space dedicated to the user to customize his
environment and tools. This volume is, by default, shared across all exegol containers. See details about it.

• exegol_resources_path: exegol-resources are data and static tools downloaded in addition to docker images.
These tools are complementary and are accessible directly from the host. See details.

• private_workspace_path: when containers do not have an explicitly declared workspace at their creation (i.e.
with --cwd-mount, or --workspace), a dedicated folder will be created at this location to share the workspace
with the host but also to save the data after deleting the container.

The config section allows you to modify the default behavior of the Exegol wrapper.

3.18. Advanced uses 43

Exegol

• auto_check_update: enables automatic check for wrapper update. (Default: True)

• auto_remove_image: automatically remove outdated image when they are no longer used. (Default: True)

• auto_update_workspace_fs: automatically modifies the permissions of folders and sub-folders in your
workspace by default to enable file sharing between the container with your host user. (Default: False)

• default_start_shell: default shell command to start. (Default: zsh)

Shell logging

Desktop

Change the configuration of the shell logging functionality.

• logging_method: Choice of the method used to record the sessions, script or asciinema. (Default:
asciinema)

• enable_log_compression: Enable automatic compression of log files (with gzip). (Default: True)

Change the configuration of the virtual Desktop feature.

• enabled_by_default: Enables or not the desktop mode by default. If this attribute is set to True, then using
the CLI --desktop option will be inverted and will DISABLE the feature (Default: False)

• default_protocol: Default desktop protocol,can be http, or vnc depending on your wrapper / image version.
(Default: http)

• localhost_by_default: Desktop service is exposed on localhost by default. If set to true, services will be
exposed on localhost (127.0.0.1) otherwise it will be exposed on 0.0.0.0. This setting can be overwritten
with –desktop-config. (Default: True)

3.18.3 My-resources

“My-resources” is a major feature allowing Exegol users to have a volume, shared with all Exegol containers, that can
centralize their own resources and configurations. It allows users to enjoy their own tools that are not available in Exegol
but also to customize their Exegol setup. More information on the dedicated documentation page My-Resources.

This volume is accessible from the host at ~/.exegol/my-resources/ and from the containers (if the feature was
left enabled at the container creation) at /opt/my-resources.

To facilitate its use, a read/write access system shared (between the host user and the container root user) has been
implemented.

Hint: To allow this permissions sharing, the “my-resources” folder (and all subdirectories) must have the Set-GID
permission bit set. This is done automatically by the wrapper if the current user has sufficient rights. Otherwise, the
wrapper will display a sudo command to be executed manually to update the relevant permissions.

The host path of this volume can be changed from the configuration file ~/.exegol/config.yml.

Warning:

• Be careful not to use a folder with existing data, in which case their permissions will be automatically
modified to enable access sharing.

• This change will not be applied to already existing exegol containers.

44 Chapter 3. Community

Exegol

3.18.4 Local builds

When installing Exegol, while downloading the pre-built and compressed Docker images from Dockerhub is advised,
users can build their own images locally. The wrapper has a local build feature to create and manage local exegol
images.

The exegol install command can be used for that purpose. The user must specify an image name that does not
match one of the remote images available from dockerhub. The wrapper will suggest to build a local image with this
name. If the user chooses to build an image locally, he will then have to choose a build profile among those available.
The build profile is merely the dockerfile to follow during the build process. An arbitrary dockerfile can be added in
/path/to/Exegol/exegol-docker-build/name.dockerfile.

Tip:

• the -v parameter can be added to have more details about the build process.

• the detailed logs of the docker build process can also be saved in a file with the --build-log parameter.

3.19 Tools list

Click here to see the lists of tools featured in the latest nightly images.

Error: [August 5th, 2023] - The lists descriptions were mostly AI-generated for this first version of the tools list
in order to get the list shipped quickly. Many descriptions are wrong and will be fixed very soon.

Hint: The lists featured here are automatically generated. Exegol features CI/CD pipelines that build the images. At
build, most tools are tested. If at least one test fails, the image doesn’t get published.

Im-
age
tag

Ver-
sion

Arch Build date Tools list

nightly 9c8eadb7amd64 2024-04-17T08:22:37Z nightly_9c8eadb7_amd64.csv
nightly 9c8eadb7arm64 2024-04-17T08:20:32Z nightly_9c8eadb7_arm64.csv

Im-
age
tag

Version Arch Build date Tools list

full 3.1.3 arm64 2024-04-14T14:16:19Z full_3.1.3_arm64.csv
full 3.1.3 amd64 2024-04-14T13:29:00Z full_3.1.3_amd64.csv
osint 3.1.3 arm64 2024-04-14T11:55:04Z osint_3.1.3_arm64.csv
web 3.1.3 arm64 2024-04-14T11:52:28Z web_3.1.3_arm64.csv
ad 3.1.3 arm64 2024-04-14T11:47:33Z ad_3.1.3_arm64.csv
osint 3.1.3 amd64 2024-04-14T10:46:46Z osint_3.1.3_amd64.csv
web 3.1.3 amd64 2024-04-14T10:43:47Z web_3.1.3_amd64.csv
ad 3.1.3 amd64 2024-04-14T10:34:36Z ad_3.1.3_amd64.csv

continues on next page

3.19. Tools list 45

Exegol

Table 1 – continued from previous page
Im-
age
tag

Version Arch Build date Tools list

light 3.1.3 amd64 2024-04-14T08:47:32Z light_3.1.3_amd64.csv
light 3.1.3 arm64 2024-04-14T08:38:48Z light_3.1.3_arm64.csv
full 3.1.2 arm64 2023-12-22T12:20:18Z full_3.1.2_arm64.csv
full 3.1.2 amd64 2023-12-22T12:04:26Z full_3.1.2_amd64.csv
ad 3.1.2 arm64 2023-12-22T12:03:46Z ad_3.1.2_arm64.csv
ad 3.1.2 amd64 2023-12-22T11:41:22Z ad_3.1.2_amd64.csv
web 3.1.2 arm64 2023-12-22T12:08:45Z web_3.1.2_arm64.csv
web 3.1.2 amd64 2023-12-22T11:46:29Z web_3.1.2_amd64.csv
light 3.1.2 arm64 2023-12-22T00:48:17Z light_3.1.2_arm64.csv
light 3.1.2 amd64 2023-12-22T00:08:53Z light_3.1.2_amd64.csv
osint 3.1.2 arm64 2023-12-22T00:43:53Z osint_3.1.2_arm64.csv
osint 3.1.2 amd64 2023-12-22T00:02:50Z osint_3.1.2_amd64.csv
full 3.1.1 amd64 2023-08-18T01:36:37Z full_3.1.1_amd64.csv
full 3.1.1 arm64 2023-08-18T01:36:23Z full_3.1.1_arm64.csv
ad 3.1.1 amd64 2023-08-18T02:59:03Z ad_3.1.1_amd64.csv
ad 3.1.1 arm64 2023-08-18T02:58:49Z ad_3.1.1_arm64.csv
web 3.1.1 arm64 2023-08-18T01:08:44Z web_3.1.1_arm64.csv
web 3.1.1 amd64 2023-08-18T01:35:14Z web_3.1.1_amd64.csv
osint 3.1.1 arm64 2023-08-18T01:04:50Z osint_3.1.1_arm64.csv
osint 3.1.1 amd64 2023-08-18T01:34:47Z osint_3.1.1_amd64.csv
light 3.1.1 arm64 2023-08-18T01:05:12Z light_3.1.1_arm64.csv
light 3.1.1 amd64 2023-08-18T01:35:00Z light_3.1.1_amd64.csv
full 3.1.0 arm64 2023-08-09T09:12:21Z full_3.1.0_arm64.csv
full 3.1.0 amd64 2023-08-09T22:27:20Z full_3.1.0_amd64.csv
ad 3.1.0 amd64 2023-08-10T00:33:47Z ad_3.1.0_amd64.csv
ad 3.1.0 arm64 2023-08-10T00:11:36Z ad_3.1.0_arm64.csv
web 3.1.0 amd64 2023-08-09T11:12:12Z web_3.1.0_amd64.csv
web 3.1.0 arm64 2023-08-09T11:11:33Z web_3.1.0_arm64.csv
osint 3.1.0 amd64 2023-08-09T10:50:11Z osint_3.1.0_amd64.csv
osint 3.1.0 arm64 2023-08-09T10:48:56Z osint_3.1.0_arm64.csv
light 3.1.0 amd64 2023-08-09T02:53:53Z light_3.1.0_amd64.csv
light 3.1.0 arm64 2023-08-09T01:50:40Z light_3.1.0_arm64.csv

Below is the list of tools featured in the latest nightly (AMD64) image.

3.20 My resources

“My-resources” brings great features allowing users to make Exegol their own and customize it even further. This
feature relies on a simple volume shared between the host and all exegol containers, and an advanced integration in the
Exegol images directly.

Warning: The “my-resources” feature will do what it’s told to do. If users choose to use that feature to replace
files or configuration, those replacements should take place. So if there are some additions to Exegol you’re not
getting, it could be because you have a “my-resources” setup that replaces it.

To learn more about the volume options, details are available here.

46 Chapter 3. Community

Exegol

Below are the features offered by “My-resources”, allowing users to extend Exegol beyond what is initially included
(tools, resources).

• Custom tools: users can place their own custom standalone tools, binaries and scripts in the “my-resources”
volume. This volume is accessible from all containers at /opt/my-resources.

• Supported setups: users can customize their exegol environments automatically and transparently without having
to manually setting things up for each and every new Exegol container they create. In this functionality, a pre-set
list of supported custom configuration is set, and will improve with time. It’s the easier and most user-friendly
approach to customizing a few configurations.

• User setup: In this functionality, a shell script can be populated with every command a user wishes its containers
to run at their creation.

• Custom tools

• Supported setups

– apt (packages, sources, keys)

– bloodhound (customqueries, config)

– firefox (addons, CA)

– python3 (pip3)

– tmux (conf)

– vim (vimrc, configs)

– neovim (.config/nvim)

– zsh (aliases, zshrc, history)

• User setup

• Troubleshooting

3.20.1 Custom tools

See also:

Available from version 3.0.0 of any exegol image.

In the container, the /opt/my-resources/bin/ folder (~/.exegol/my-resources/bin/ on the host) is automat-
ically added to the PATH of the zsh shell. The user can then add tools in that folder in order to use them from the
container.

Hint: The most simple approach would be to add standalone binaries, but users could also add symbolic links that
would point to somewhere else in /opt/my-resources/.

Example for a standalone binary
cp /path/to/tool ~/.exegol/my-resources/bin/

Example for a symbolic link
git -C ~/.exegol/my-resources/ clone "https://github.com/someauthor/sometool"
ln -s ~/.exegol/my-resources/sometool/script.py ~/.exegol/my-resources/bin/script.py

3.20. My resources 47

Exegol

3.20.2 Supported setups

Configuration files stored in the /opt/my-resources/setup/ directory will be deployed on the containers and allow
users to customize Exegol even further. By default, the number of officially supported configuration files is limited,
and it depends on the version of the image itself, not the wrapper.

Hint: In order to see what configuration files are supported in your version, the /opt/supported_setups.md
documentation file can be read from any container.

This documentation will reference in detail all the supported customizations available over time, and the corresponding
minimum image version required for each one.

If a user wants to deploy tools and configurations that are not supported, or more advanced, they can opt for the User
setup solution.

apt (packages, sources, keys)

See also:

Available from version 3.0.0 of any exegol image.

A system exists to easily install arbitrary APT packages in any new exegol container.

• Custom APT repositories can be added in exegol by filling in the /opt/my-resources/setup/apt/sources.
list file

• Importing custom repositories usually requires importing GPG keys as well, which can be done by entering
trusted GPG keys download URLs in the /opt/my-resources/setup/apt/keys.list file

• To install APT packages automatically (after updating the repository including the custom ones), just enter a list
of package names in the /opt/my-resources/setup/apt/packages.list file

bloodhound (customqueries, config)

See also:

Available from version 3.1.0 of the ad and full images.

A system exists to easily add one or several bloodhound customqueries files, or change its configuration file in any new
exegol container.

To automatically:

• overwrite the ~/.config/bloodhound/config.json configuration file, simply create the file /opt/
my-resources/setup/bloodhound/config.json

• replace the default exegol customqueries, place one or several valid customqueries files into the folder /opt/
my-resources/setup/bloodhound/customqueries_replacement/.

• merge with the default exegol customqueries by placing one or several valid customqueries files into the folder
/opt/my-resources/setup/bloodhound/customqueries_merge/

Tip: To be considered for replacing or merging, the customqueries files must be valid and bear the .json extension.
The file names do not matter. The output will be saved into the single file ~/.config/bloodhound/customqueries.
json.

48 Chapter 3. Community

Exegol

firefox (addons, CA)

See also:

Available from version 3.0.2 of any exegol image.

A system exists to easily install arbitrary firefox addons in any new exegol container.

The /opt/my-resources/setup/firefox/addons.txt file allows the user to list addons to install from online
sources. It must be filled with their links in Mozilla’s shop (for example https://addons.mozilla.org/fr/firefox/addon/
foxyproxy-standard/).

The .xpi files in /opt/my-resources/setup/firefox/addons/ folder will be installed as well.

See also:

Below, available from version 3.2.0 of any exegol image.

The .der files in /opt/my-resources/setup/firefox/CA/ folder will be trusted .

python3 (pip3)

See also:

Available from version 3.0.0 of any exegol image.

A system exists to easily install arbitrary PIP3 packages in any new exegol container.

The /opt/my-resources/setup/python3/requirements.txt file allows the user to list a set of packages to install
with constraints just like a classic requirements.txt file.

tmux (conf)

See also:

Available from version 3.0.0 of any exegol image.

Exegol supports overloading its tmux configuration to allow all users to use their personal configuration.

• To automatically overwrite the ~/.tmux.conf configuration file, simply create the file /opt/my-resources/
setup/tmux/tmux.conf

Tip: It is possible to install plugins with the APT customization system, details here.

vim (vimrc, configs)

See also:

Available from version 3.0.0 of any exegol image.

Exegol supports overwriting its vim configuration to allow all users to use their personal configuration.

• To automatically overwrite the ~/.vimrc configuration file, simply create the file /opt/my-resources/
setup/vim/vimrc

• vim configuration folders are also automatically synchronized:

– /opt/my-resources/setup/vim/autoload/* –> ~/.vim/autoload/

– /opt/my-resources/setup/vim/backup/* –> ~/.vim/backup/

3.20. My resources 49

https://addons.mozilla.org/fr/firefox/addon/foxyproxy-standard/
https://addons.mozilla.org/fr/firefox/addon/foxyproxy-standard/

Exegol

– /opt/my-resources/setup/vim/colors/* –> ~/.vim/colors/

– /opt/my-resources/setup/vim/plugged/* –> ~/.vim/plugged/

– /opt/my-resources/setup/vim/bundle/* –> ~/.vim/bundle/

Tip: It is possible to install plugins with the APT customization system.

neovim (.config/nvim)

See also:

Will be available from version 3.1.2 of any exegol image.

Exegol supports overwriting its neovim configuration to allow all users to use their personal configuration.

• To automatically overwrite the ~/.config/nvim/ configuration, copy your config in /opt/my-resources/
setup/nvim/

Tip: It is possible to install plugins dependencies with the APT customization system.

zsh (aliases, zshrc, history)

See also:

Available from version 3.0.0 of any exegol image.

To not change the configuration for the proper functioning of exegol but allow the user to add aliases and custom com-
mands to zshrc, additional configuration files will be automatically loaded by zsh to take into account the customization
of the user .

• aliases: any custom alias can be defined in the /opt/my-resources/setup/zsh/aliases file. This file is
automatically loaded by zsh.

• zshrc: it is possible to add commands at the end of the zshrc routine in /opt/my-resources/setup/zsh/
zshrc file.

• history: it is possible to automatically add history commands at the end of ~/.zsh_history from the file
/opt/my-resources/setup/zsh/history.

Tip: It is possible to install plugins with the APT customization system, details here.

3.20.3 User setup

See also:

Available from version 3.0.0 of any exegol image.

The /opt/my-resources/setup/load_user_setup.sh script is executed on the first startup of each new container
that has the “my-resources” feature enabled. Arbitrary code can be added in this file, in order to customize Exegol
(dependency installation, configuration file copy, etc).

50 Chapter 3. Community

Exegol

Warning: It is strongly advised not to overwrite the configuration files provided by exegol (e.g. /root/.zshrc,
/opt/.exegol_aliases, . . .), official updates will not be applied otherwise.

3.20.4 Troubleshooting

In case of problem, the customization system logs all actions in the /var/log/exegol/load_setups.log file.

If the whole installation went smoothly the log file will be compressed by gunzip and will have the name /var/log/
exegol/load_setups.log.gz

Tip: Logs in .gz format can be viewed directly without unpacking them with the zcat, zgrep, zdiff or zmore
command!

3.21 Credentials

Some tools are pre-configured with the following credentials

Element User Password
neo4j database neo4j exegol4thewin
bettercap ui bettercap exegol4thewin
trilium trilium exegol4thewin
empire empireadmin exegol4thewin
wso-webshell (PHP) exegol4thewin

3.22 Services list

This section lists the services that can be used in Exegol containers and their associated default ports.

Note: Note that, as of 25/10/2023, a utility is being developped in order to randomize those ports so that multiple
containers being used concurrently don’t have their services step on one another if they share a network interface. This
utility will be mostly transparent, and will modify the services configuration files dynamically.

3.21. Credentials 51

Exegol

Service Port Commands Comments
neo4j

• bolt
• http
• https

7687
7474
7373

neo4j start, neo4j stop, neo4j
restart

Used by BloodHound, and BloodHound-related
projects.

BloodHound-
CE

1030bloodhound-ce
bloodhound-ce-reset
bloodhound-ce-stop

BloodHound Community Edition Web Interface

postgresql 5432service postgresql [...] Used by BloodHound CE
Trilium 1991trilium-start, trilium-stop Collaborative note taking app. https://github.com/

zadam/trilium
Burp Suite 8080burpsuite HTTP(S) Proxy
Starkiller
(Empire)

TBDps-empire server GUI for the Empire post-exploit framework (https:
//github.com/BC-SECURITY/Empire)

Havoc 40056havoc client/server C2 Framework in GO (https://github.com/
HavocFramework/Havoc)

Desktop
• vnc
• web-

sock-
ify

6336
ran-
dom

desktop-start, desktop-stop,
desktop-restart

Remote graphical desktop feature (beta). Used
with the --desktop from up-to-date wrapper.

3.23 Resources

Exegol’s “offline resources” are a neat choice of standalone tools and scripts that are often used during penetration
tests, CTFs and red-teams. While many penetration testers download those resources again every time they need them,
Exegol users don’t have to. Everything is managed by the wrapper and they are shared with every container by default
(at /opt/resources).

3.23.1 Resources list

Hint: The list featured here is automatically generated. Exegol features CI/CD pipelines that build the images, update
the resources, etc. When a change is made on the Exegol-resources repository, it’s reflected here, in the list.

Resource Link Description
SysInternals https://learn.microsoft.com/en-us/sysinternals Windows utilities signed by Microsoft
pspy https://github.com/DominicBreuker/pspy Monitor linux processes without root permissions
PEASS-ng https://github.com/carlospolop/PEASS-ng Privilege Escalation Awesome Scripts SUITE
linux-smart-enumeration (lse.sh) https://github.com/diego-treitos/linux-smart-enumeration Linux enumeration tool for pentesting and CTFs with verbosity levels
LinEnum https://github.com/rebootuser/LinEnum Scripted Local Linux Enumeration & Privilege Escalation Checks
Linux Exploit Suggester https://github.com/The-Z-Labs/linux-exploit-suggester Linux privilege escalation auditing tool
Mimikatz https://github.com/gentilkiwi/mimikatz A little tool to play with Windows security
SharpHound.exe https://github.com/BloodHoundAD/BloodHound C# ingestor for BloodHound
JuicyPotato.exe https://github.com/ohpe/juicy-potato https://github.com/ohpe/juicy-potato

continues on next page

52 Chapter 3. Community

https://github.com/zadam/trilium
https://github.com/zadam/trilium
https://github.com/BC-SECURITY/Empire
https://github.com/BC-SECURITY/Empire
https://github.com/HavocFramework/Havoc
https://github.com/HavocFramework/Havoc
https://learn.microsoft.com/en-us/sysinternals
https://github.com/DominicBreuker/pspy
https://github.com/carlospolop/PEASS-ng
https://github.com/diego-treitos/linux-smart-enumeration
https://github.com/rebootuser/LinEnum
https://github.com/The-Z-Labs/linux-exploit-suggester
https://github.com/gentilkiwi/mimikatz
https://github.com/BloodHoundAD/BloodHound
https://github.com/ohpe/juicy-potato
https://github.com/ohpe/juicy-potato

Exegol

Table 2 – continued from previous page
Resource Link Description
PrintSpoofer https://github.com/itm4n/PrintSpoofer Abusing SeImpersonatePrivilege from LOCAL/NETWORK SERVICE
GodPotato https://github.com/BeichenDream/GodPotato Abusing SeImpersonatePrivilege on recent Windows OS (up to W11 and Server 2022)
static netcat (linux) https://github.com/andrew-d/static-binaries Utility to establish TCP or UDP connections
static netcat (windows) https://gitlab.com/onemask/pentest-tools Utility to establish TCP or UDP connections
SpoolSample.exe https://gitlab.com/onemask/pentest-tools PoC tool to coerce Windows hosts authenticate to other machines
DiagHub.exe https://gitlab.com/onemask/pentest-tools Diagnostics Hub Standard Collector Service
LaZagne https://github.com/AlessandroZ/LaZagne Credentials recovery project
Sublinacl.exe https://gitlab.com/onemask/pentest-tools Modify Access Control Entries
plink.exe https://www.cog-genomics.org/plink/ Network connection tool
deepce https://github.com/stealthcopter/deepce Docker Enumeration Escalation of Privileges and Container Escapes
Some webshells PHP and ASPX webshells
ysoserial https://github.com/pwntester/ysoserial A proof-of-concept tool for generating payloads that exploit unsafe Java object deserialization
http-put-server https://gist.githubusercontent.com/mildred/67d22d7289ae8f16cae7/raw/214c213c9415da18a471d1ed04660022cce059ef/server.py HTTP PUT Server
Chisel https://github.com/jpillora/chisel A fast TCP/UDP tunnel over HTTP
ligolo-ng https://github.com/nicocha30/ligolo-ng Advanced yet simple tunneling/pivoting tool that uses a TUN interface
bitleaker https://github.com/kkamagui/bitleaker This tool can decrypt a BitLocker-locked partition with the TPM vulnerability
napper https://github.com/kkamagui/napper-for-tpm TPM vulnerability checking tool for CVE-2018-6622
mimipenguin https://github.com/huntergregal/mimipenguin A tool to dump the login password from the current linux user
p0wny-shell https://github.com/flozz/p0wny-shell Single-file PHP shell
Inveigh https://github.com/Kevin-Robertson/Inveigh .NET IPv4/IPv6 machine-in-the-middle tool for penetration testers
MailSniper https://github.com/dafthack/MailSniper Penetration testing tool for searching through email in a Microsoft Exchange
PowerSploit https://github.com/PowerShellMafia/PowerSploit A PowerShell Post-Exploitation Framework
PrivescCheck https://github.com/itm4n/PrivescCheck Privilege Escalation Enumeration Script for Windows
SharpCollection https://github.com/Flangvik/SharpCollection Nightly builds of common C# offensive tools
WinEnum https://github.com/neox41/WinEnum Script for Local Windows Enumeration
impacket-examples-windows https://github.com/maaaaz/impacket-examples-windows The great impacket example scripts compiled for Windows
nishang https://github.com/samratashok/nishang Offensive PowerShell for red team

3.24 Users

This part of the documentation is meant for Exegol users, those who want to understand the project a bit more, open
issues, get in touch with the community, etc..

• Opening issues

• Roadmap

• Discord

3.24. Users 53

https://github.com/itm4n/PrintSpoofer
https://github.com/BeichenDream/GodPotato
https://github.com/andrew-d/static-binaries
https://gitlab.com/onemask/pentest-tools
https://gitlab.com/onemask/pentest-tools
https://gitlab.com/onemask/pentest-tools
https://github.com/AlessandroZ/LaZagne
https://gitlab.com/onemask/pentest-tools
https://www.cog-genomics.org/plink/
https://github.com/stealthcopter/deepce
https://github.com/pwntester/ysoserial
https://gist.githubusercontent.com/mildred/67d22d7289ae8f16cae7/raw/214c213c9415da18a471d1ed04660022cce059ef/server.py
https://github.com/jpillora/chisel
https://github.com/nicocha30/ligolo-ng
https://github.com/kkamagui/bitleaker
https://github.com/kkamagui/napper-for-tpm
https://github.com/huntergregal/mimipenguin
https://github.com/flozz/p0wny-shell
https://github.com/Kevin-Robertson/Inveigh
https://github.com/dafthack/MailSniper
https://github.com/PowerShellMafia/PowerSploit
https://github.com/itm4n/PrivescCheck
https://github.com/Flangvik/SharpCollection
https://github.com/neox41/WinEnum
https://github.com/maaaaz/impacket-examples-windows
https://github.com/samratashok/nishang

Exegol

3.24.1 Opening issues

Create an issue in the correct repository:

• For any problem concerning Exegol WRAPPER (the exegol command).

• For any problem concerning Exegol IMAGE (the exegol environment).

• For any problem concerning Exegol RESOURCE (the exegol offline resources).

• For any problem concerning Exegol DOCUMENTATION (the exegol documentation).

3.24.2 Roadmap

The roadmap is available on GitHub: https://github.com/orgs/ThePorgs/projects/1/views/1

3.24.3 Discord

An Exegol discord has been created to facilitate exchanges between the community, open tickets, share ideas, vote on
future features to prioritize etc..

54 Chapter 3. Community

https://github.com/ThePorgs/Exegol/issues
https://github.com/ThePorgs/Exegol-images/issues
https://github.com/ThePorgs/Exegol-resources/issues
https://github.com/ThePorgs/Exegol-docs/issues
https://github.com/orgs/ThePorgs/projects/1/views/1

Exegol

3.25 Contributors

This part of the documentation is meant for Exegol contributors, those who write code and open pull requests. If adds
up to the users documentation.

First things first, once you know on what module you want to contribute (wrapper, images, documentation, resources,
etc.) fork it, checkout to the dev branch, then come back to this page to start coding.

• Documentation

• Images

– Adding a new tool

∗ Function structure

∗ Install standards

∗ Other standards

∗ Multi-architecture builds

∗ Calling the install function

∗ Submitting the pull request

– Temporary fixing a tool

– Adding to my-resources

• Wrapper

• Signing commits

3.25.1 Documentation

A new feature, whether it’s on the wrapper, images, or any other module, must be documented accordingly. Make sure
to open a pull request to the appropriate Exegol docs branch on top of your wrapper/images/whatever pull request.

Table 3: Exegol-docs branches

Branch Purpose
main nothing gets pushed there. This branch is made to merge with the other branches.
dev-wrapper Related to the wrapper (Exegol)
dev-images Related to the images (Exegol-images)
dev General purpose

Before pushing a pull request on the documentation repository, it is advised to try and compile locally to make sure
there are no errors and everything renders as expected. First, the requirements listed in requirements.txt must be
installed (e.g. pip install --user -r ./requirements.txt). Then, the one-liner below can be used to remove
any previous build, compile again and open the build in a browser.

rm -r build; make html; open "build/html/community/contributors.html"

Nota bene: in the example above, the open command opens an Internet browser (it’s a macOS command), but it can
be replaced by anything else that fits the contributor’s environement (e.g. firefox).

3.25. Contributors 55

https://github.com/ThePorgs/Exegol
https://github.com/ThePorgs/Exegol-images
https://github.com/ThePorgs/Exegol-docs
https://github.com/ThePorgs/Exegol-resources
https://docs.github.com/en/get-started/quickstart/fork-a-repo
https://git-scm.com/docs/git-checkout
https://github.com/ThePorgs/Exegol-docs
https://github.com/ThePorgs/Exegol
https://github.com/ThePorgs/Exegol-images

Exegol

3.25.2 Images

The Docker images are the heart of the Exegol project. A neat choice of tools, configurations, aliases, history com-
mands, and various customizations are prepared in multiple images adapted for multiple uses: web hacking, Active
Directory, OSINT (Open Source INTelligence), etc.

If you want to contribute to this part of the project, there are some things you need to know and some rules you need
to follow.

Adding a new tool

In order to add a new tool to an image, here is how it goes. First, you need to figure out in what package your tool
installation function must go to: packages.

Function structure

When preparing the install function to the package, don’t forget to include the following functions:

• colorecho "Installing yourtool": this is needed to raise logs inside the CI/CD pipeline

• catch_and_retry <some command>: this one is optional. When a command uses the Internet and could
potentially fail randomly, the catch_and_retry wrapper is here to retry that commands multiple times with
increasing time intervals in order to avoid having a whole build fail because of one temporary network error.
Nota bene: most standard Internet-involved commands are transparently put behind a catch_and_retry (e.g.
git, wget, curl, go, etc.).

• add-aliases yourtool: if your tool needs to have one or multiple aliases to work properly. You will need to
create the aliases file in /sources/assets/shells/aliases.d/ named after your tool. This file must contain
the alias(es) to set as follows.

alias tool.py='python3 /opt/tools/yourtool/tool.py'

• add-history yourtool: if it’s relevant to give some command example of your tool. No need to populate the
history with a command that’s very short or never used. Using long arguments is preferred. Using environment
variables is preferred (e.g. $USER, $PASSWORD, $TARGET, etc.). You will need to create the history file in /
sources/assets/shells/history.d/ named after your tool. This file must contain the history command(s)
like the example below.

yourtool.py --user "$USER" --password "$PASSWORD" --target "$TARGET"
yourtool.py --mode enum --user "$USER" --target "$TARGET"
yourtool.py --mode unauthenticated

• add-test-command "testcommand": this is needed by the CI/CD pipeline to conduct unit tests for all tools
to make sure they are installed properly before publishing new images. The test command needs to return 0 if
the tool works properly, anything else if it doesn’t. For instance, something like yourtool.py --help usually
works, but not always! In order to find what command can be used for unit tests, you can do something like
yourtool.py --help; echo $? to see what code is returned after the command is executed. Once trick that
can be used when the --help command returns something !=0 is to do some grep like yourtool.py --help|&
grep 'Usage:'.

• add-to-list "yourtool,https://link.to/the/tool,description": this is used by the CI/CD
pipeline to automatically export tools in the Tools list. The format of the entry is standard 3-columns CSV
(comma separated values). The first column is the tool name, then the link to the tool, then the description. Be
careful to not have more than 2 commas and replace any comma in the description by something else.

56 Chapter 3. Community

https://github.com/ThePorgs/Exegol-images/tree/main/sources/install

Exegol

In case your tool doesn’t need aliases or history commands, add the following comment at the beggining of the tool
install function: # CODE-CHECK-WHITELIST=. Then add a comma-separated list of the exclusions. Below are some
examples.

CODE-CHECK-WHITELIST=add-aliases
CODE-CHECK-WHITELIST=add-aliases,add-history

TL;DR, your tool installation function should look something like this:

function install_yourtool() {
colorecho "Installing yourtool"
tool install commands [...]
add-aliases yourtool
add-history yourtool
add-test-command "yourtool.py --help"
add-to-list "yourtool,https://link.to/the/tool,description"

}

Install standards

When installing a tool, depending on how it gets installed, here are the rules.

• Most tools have their virtual environment, in order to avoid dependencies conflicts. Python virtual environments
must have access to the system site-packages, to avoid redunduncy on already install common dependencies.

• Most tools are installed either in their own directory in /opt/tools/ or have the binary (or a symlink) in /opt/
tools/bin/.

• Disk space being limited, we’re not pull every code source around. When possible, add the --depth 1 option
to your usual git clone command.

Python sources (pipx)

Python sources (venv)

APT install

Go

Ruby

Compile sources

Download compiled binary

The easiest way to install a Python tool is to use pipx.

from github.com example
python3 -m pipx install git+https://github.com/AUTHOR/REPO

from local sources
git -C /opt/tools/ clone --depth 1 https://github.com/AUTHOR/REPO
python3 -m pipx install --system-site-packages /opt/tools/yourtool/

But some tools cannot be installed this way, either because they’re missing the setup.py or for any other obscure
reason. In that case, opt for the “Python (venv)” solution.

In this example, the tool sources are downloaded, a virtual python environment is set up, requirements are installed,
and an alias is created.

3.25. Contributors 57

Exegol

Nota bene 1: when the requirements are installed, it’s better to have the command put behind a catch_and_retry so
that if their is a temporary network outage during the build, the command will be tried multiple times with increased
delays to avoid having the whole build fail.

Nota bene 2: there is no need to put standard git, wget, curl, go, and similar commands behind a catch_and_retry
as its already handled transparently.

git -C /opt/tools/ clone --depth 1 https://github.com/AUTHOR/REPO
cd /opt/tools/yourtool || exit
python3 -m venv --system-site-packages ./venv/
source ./venv/bin/activate
pip3 install -r requirements.txt
deactivate
add-aliases yourtool

And add the following alias to your new alias file in /sources/assets/shells/aliases.d/

alias yourtool='/opt/tools/yourtool/venv/bin/python3 /opt/tools/yourtool/yourtool.py'

APT installations are regrouped to go faster and save some bandwith. In the package_whatever.sh file you’re editing,
look for a function called install_*_apt_tools(). The package you want to install needs to be added there, along
with the add-history, add-test-command and add-to-list instructions.

Go tools can be installed with a standard go install -v github.com/AUTHOR/REPO@latest command.

A typical Ruby tool install will look like this:

function install_yourtool() {
colorecho "Installing yourtool"
rvm use 3.0.0@yourtool --create
gem install yourtool
rvm use 3.0.0@default
add-aliases yourtool
add-history yourtool
add-test-command "yourtool --help"
add-to-list "yourtool,https://github.com/AUTHOR/REPO,description"

}

And the alias file will look something like this.

alias yourtool='/usr/local/rvm/gems/ruby-3.0.0@yourtool/wrappers/ruby /usr/local/rvm/
→˓gems/ruby-3.0.0@yourtool/bin/yourtool'

When installing a binary tool (pre-compiled or compiled live), it needs to be moved or linked in /opt/tools/bin.
Below is an example of tool compilation and installation.

function install_yourtool() {
colorecho "Installing yourtool"
git -C /opt/tools/ clone --depth 1 https://github.com/AUTHOR/REPO
cd /opt/tools/yourtool
./configure
make
ln -s "/opt/tools/yourtool/bin/yourtool" "/opt/tools/bin/yourtool"
add-history yourtool
add-test-command "yourtool --help"

(continues on next page)

58 Chapter 3. Community

Exegol

(continued from previous page)

add-to-list "yourtool,https://github.com/AUTHOR/REPO,description"
}

It’s not uncommon to have tools already compiled, sometimes available in the “releases” section of a GitHub repository.
In the following example, the latest .tar.xz release archive is dynamically fecthed from the repo, by grepping the right
strings to match the name of the file and extracted. And then a symbolic link is created. The extact context can differ
for each and every tool, but the example function below can serve as codebase. Trying to find similar examples in the
code could also help a contributor find similar contexts and how they got implemented.

function install_yourtool() {
colorecho "Installing yourtool"
local URL
URL=$(curl --location --silent "https://api.github.com/repos/AUTHOR/REPO/releases/

→˓latest" | grep 'browser_download_url.*somestring.*tar.xz"' | grep -o 'https://[^"]*')
curl --location -o /tmp/tool.tar.xz "$URL"
tar -xf /tmp/yourtool.tar.xz --directory /tmp
rm /tmp/yourtool.tar.xz
mv /tmp/yourtool* /opt/tools/yourtool
ln -s "/opt/tools/yourtool/bin/yourtool" "/opt/tools/bin/yourtool"
add-history yourtool
add-test-command "yourtool --help"
add-to-list "yourtool,https://github.com/AUTHOR/REPO,description"

}

Other standards

If your tool opens ports, or if there are credentials at play, please take a look at the corresponding documentations

• Credentials

• Ports & services

Multi-architecture builds

Know that Exegol images are built by, and for, AMD64 and ARM64 systems. Most systems are AMD64 (x86_64),
but some other people use ARM64 (M1/M2 Apple Sillicon chips, 64bits Raspberry-Pies, . . .). Whenever possible, try
to make sure your tool install function works for both architectures. Rest assured, if you don’t have both architectures
at your disposal it’s perfectly fine, we’ll take care of this part for you. If you do, and if your tool installation function
includes some commands that differ wether they run on an ARM64 or AMD64 host, you can use the following structure.

if [[$(uname -m) = 'x86_64']]
then

command for AMD64
elif [[$(uname -m) = 'aarch64']]
then

command for ARM64
else

criticalecho-noexit "This installation function doesn't support architecture $(uname␣
→˓-m)" && return
fi

3.25. Contributors 59

Exegol

Calling the install function

Once the install function is over with, it needs to be called in the function that holds the same name as the package. For
instance, if you’re adding your tool install function in the package_web.sh package, you’ll need to call that function
in the package_ad() function (usually at the bottom of that file).

It will look something like this.

function package_web() {
[...]
install_yourtool
[...]

}

Submitting the pull request

Hint: Once all your changes are over, and before submitting a pull request, it is advised to test your installation process
locally. The Exegol wrapper can be used to build local images. Run exegol install --help to see some examples.
You can also run the unit tests yourself by creating

build the local image
exegol install "testimage" "full" --build-log "/tmp/testimage.log"

create and start a container for the tests
exegol start "testcontainer" "testimage"

run the tests (from the container)
cat /.exegol/build_pipeline_tests/all_commands.txt | grep -vE "^\s*$" | sort -u > /.
→˓exegol/build_pipeline_tests/all_commands.sorted.txt
python3 /.exegol/build_pipeline_tests/run_tests.py
cat /.exegol/build_pipeline_tests/failed_commands.log

Warning: Your pull request needs to be made against the dev branch.

Once you submit your pull request, and once the various changes that may be requested are made, a CI/CD pipeline
will run to make sure your code is compliant and that the tool is installed and works as intended. The pipeline may
raise some issues, but if they’re not related to your tool (e.g. network issues are common) don’t worry about it. If the
errors are due to your tool install, then you’ll need to make the necessary changes to make your install work.

Once everything works, the pull request will be merged, the pipeline will run again in order to test, build and publish
a new nightly image. Congrats, you’re now an Exegol contributor!

60 Chapter 3. Community

Exegol

Temporary fixing a tool

Tools sometimes have their own issues along their development. A temporary fix can be added as follows, in order to
let builds pass successfully, while the respective tool is not fixed. The fix depends on the way the tool is supposed to
be installed.

Git (checkout)

Git (merge PRs)

Applying the temporary fix for a tool installed through git goes as follows when checking out a previous commit

1. Find the commit id that made the tool install fail. This can be found in a try & repeat manner by installing the
tool in an exegol container, checking out on a commit ID, try installing again, and repeat until it works.

2. Comment out the inital git clone command.

3. Add the temporary fix (git clone and git checkout) in a if statement that makes sure the fix won’t stay there
forever. The error message will be raised and noticed in the pipeline.

4. (bonus) create an issue on the repo (if it doesn’t exist already) with the appropriate logs to help the tool’s main-
tainers notice the installation error and fix it.

function install_TOOL() {
[...]
git -C /opt/tools/ clone --depth 1 https://github.com/REPO/TOOL.git
local temp_fix_limit="YYYY-MM-DD"
if ["$(date +%Y%m%d)" -gt "$(date -d $temp_fix_limit +%Y%m%d)"]; then

criticalecho "Temp fix expired. Exiting."
else
git -C /opt/tools/ clone https://github.com/REPO/TOOL.git
git -C /opt/tools/TOOL checkout 774f1c33efaaccf633ede6e704800345eb313878

fi
[...]

}

When merging PRs on the fly, the temp fix goes like this

1. Find the PRs the need to be merged. Warning: only PRs from trusted authors must be hot-merged in this
manner.

2. List the PR numbers in the PRS array

3. Merge. In the example below the --strategy-option theirs strategy is chosen, but it can be changed if
needed.

function install_TOOL() {
[...]
git -C /opt/tools/ clone --depth 1 https://github.com/REPO/TOOL.git
local temp_fix_limit="YYYY-MM-DD"
if ["$(date +%Y%m%d)" -gt "$(date -d $temp_fix_limit +%Y%m%d)"]; then

criticalecho "Temp fix expired. Exiting."
else

git config --local user.email "local"
git config --local user.name "local"
local PRS=("111" "222" "333")
for PR in "${PRS[@]}"; do git fetch origin "pull/$PR/head:pull/$PR" && git merge␣

→˓--strategy-option theirs --no-edit "pull/$PR"; done
(continues on next page)

3.25. Contributors 61

Exegol

(continued from previous page)

fi
[...]

}

Adding to my-resources

Hint: This documentation is not written yet. . . Please contact us if you would like to contribute to this part and don’t
know how.

3.25.3 Wrapper

Hint: This documentation is not written yet. . . Please contact us if you would like to contribute to this part and don’t
know how.

3.25.4 Signing commits

To make the project as secure as possible, signed commits are now required to contribute to the project. Using signatures
for commits on GitHub serves several important purposes :

• Authentication: it verifies the authenticity of the commit, ensuring that it was indeed made by the person claim-
ing to have made it.

• Integrity: it ensures that the commit hasn’t been tampered with since it was signed. Any changes to the commit
after it has been signed will invalidate the signature.

• Trust: this ensures that all contributions come from trusted sources.

• Visibility: on GitHub, signed commits are marked with a “verified” label, giving users and collaborators confi-
dence in the commit’s origin and integrity.

GitHub offers an official documentation on the matter that can be followed to setup and sign commits properly. Exegol’s
documentation will sum it up briefly and link to it whenever it’s needed.

While SSH (+ FIDO2) is preferred since it offers better multi-factor signing capabilities (knowledge + hardware pos-
session factors), people that don’t have the required hardware can proceed with GPG or SSH.

GPG

SSH

SSH (+ FIDO2)

Generating a GPG key can be done by following GitHub’s official documentation on the matter (generating a new GPG
key). TL;DR, the commands look something like this:

for the email, indicate your public email (ID+Name@users.noreply.github.com) from␣
→˓https://github.com/settings/emails
gpg --quick-generate-key "YOUR_NAME <ID+Name@users.noreply.github.com>" ed25519 sign 0
gpg --list-secret-keys --keyid-format=long
gpg --armor --export $KEYID

62 Chapter 3. Community

https://docs.github.com/fr/authentication/managing-commit-signature-verification/signing-commits
https://docs.github.com/en/authentication/managing-commit-signature-verification/generating-a-new-gpg-key
https://docs.github.com/en/authentication/managing-commit-signature-verification/generating-a-new-gpg-key

Exegol

Once the GPG key is generated, it can be added to the contributor’s GitHub profile. Again, GitHub’s documentation
explains how to achieve that (adding a GPG key to your GitHub account).

Once the GPG key is generated and associated to the GitHub account, it can be used to sign commits. In order to
achieve that, the contributor must configure git properly on his machine (telling git about your GPG key).

TL;DR: the commands look something like this to set it up for git CLI:

gpg --list-secret-keys --keyid-format=long
git config --global user.signingkey $KEYID

(option 1) configure locally on a specific repo
cd /path/to/repository && git config commit.gpgsign true

(option 2) configure for all git operations
git config --global commit.gpgsign true

To set it up on IDEs, proper official documentations can be followed (e.g. GitKraken, PyCharm).

Generating an SSH key can be done by following GitHub’s official documentation on the matter (generating a new SSH
key). TL;DR, the commands look something like this:

for the email, indicate your public email (ID+Name@users.noreply.github.com) from␣
→˓https://github.com/settings/emails
ssh-keygen -t ed25519 -C "YOUR_NAME <ID+Name@users.noreply.github.com>"

Once the SSH key is generated, the public part can be added to the contributor’s GitHub profile. Again, GitHub’s
documentation explains how to achieve that (adding a new SSH key to your GitHub account).

Once the SSH key is generated and associated to the GitHub account, it can be used to authenticate and sign commits.
In order to achieve that, the contributor must configure ssh and git properly on his machine (telling git about your
SSH key).

TL;DR: the commands look something like this:

Hint: The git client version must be 2.34 or later.

if setting up for the first time, configure git
git config --global user.name "YOUR_NAME"
for the email, indicate your public email (ID+Name@users.noreply.github.com) from␣
→˓https://github.com/settings/emails
git config --global user.email "ID+Name@users.noreply.github.com"

git config --global gpg.format ssh
replace the public key path if needed, below is an example
git config --global user.signingkey "$HOME/.ssh/id_ed25519.pub"

configure git to sign commits and tags by default
git config --global commit.gpgsign true
git config --global tag.gpgsign true

verify commits locally, associate SSH public keys with users
mkdir -p ~/.config/git
echo "$(git config --get user.email) $(cat ~/.ssh/id_ed25519.pub)" | tee ~/.config/git/

(continues on next page)

3.25. Contributors 63

https://docs.github.com/en/authentication/managing-commit-signature-verification/adding-a-gpg-key-to-your-github-account
https://docs.github.com/en/authentication/managing-commit-signature-verification/telling-git-about-your-signing-key
https://help.gitkraken.com/gitkraken-client/commit-signing-with-gpg/#configure-gpg-in-gitkraken
https://www.jetbrains.com/help/pycharm/set-up-GPG-commit-signing.html#enable-commit-signing
https://docs.github.com/en/authentication/connecting-to-github-with-ssh/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent
https://docs.github.com/en/authentication/connecting-to-github-with-ssh/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent
https://docs.github.com/en/authentication/connecting-to-github-with-ssh/adding-a-new-ssh-key-to-your-github-account
https://docs.github.com/en/authentication/managing-commit-signature-verification/telling-git-about-your-signing-key#telling-git-about-your-ssh-key
https://docs.github.com/en/authentication/managing-commit-signature-verification/telling-git-about-your-signing-key#telling-git-about-your-ssh-key

Exegol

(continued from previous page)

→˓allowed_signers
git config --global gpg.ssh.allowedSignersFile "$HOME/.config/git/allowed_signers"

The SSH connection can then be tested as follows (testing your SSH connection).

load the SSH agent into the current shell
eval "$(ssh-agent -s)"

test the SSH authentication to GitHub servers
ssh -T git@github.com

This part of the doc explains how to setup and use FIDO2 security keys, such as YubiKeys, Google’s Titan, etc.

First of all, a new FIDO2 key can be configured as follows to set up a PIN.

list FIDO2 devices
fido2-token -L

set a PIN for the device
fido2-token -S $device

Then, a resident key can be created and stored on the YubiKey as follows (see Yubico’s documentation).

Hint: Some FIDO2 keys (e.g. recent YubiKeys, and probably others) support resident keys. A resident key is stored
on the hardware key itself and easier to import to a new computer because it can be loaded directly from the security
key. In order to use that feature, the -O resident option can be added to the ssh-keygen command chosen below.

(default) touch only
ssh-keygen -t ed25519-sk

PIN + touch
ssh-keygen -t ed25519-sk -O verify-required

nothing (could be unsupported by some OpenSSH clients)
ssh-keygen -t ed25519-sk -O no-touch-required

PIN (could be unsupported by some OpenSSH clients)
ssh-keygen -t ed25519-sk -O verify-required -O no-touch-required

Once the SSH key is generated, the public part can be added to the contributor’s GitHub profile. GitHub’s documen-
tation explains how to achieve that (adding a new SSH key to your GitHub account).

Once a key is created and added on GitHub, it can be added to the contributor’s machine SSH environment as follows.
This is as easy as copy-pasting the public and private key parts to ~/.ssh.

Hint: If you opted for a resident key setup, the SSH key can be loaded from the hardware key itself.

Note that those steps shouldn’t be needed when the key has just been created, as the keys should automatically be added
to ~/.ssh. The commands below are mostly relevant when using existing resident keys on a new system.

temporary
needs to be done again after a reboot

(continues on next page)

64 Chapter 3. Community

https://docs.github.com/en/authentication/connecting-to-github-with-ssh/testing-your-ssh-connection
https://developers.yubico.com/WebAuthn/WebAuthn_Developer_Guide/Resident_Keys.html
https://www.yubico.com/blog/github-now-supports-ssh-security-keys/
https://docs.github.com/en/authentication/connecting-to-github-with-ssh/adding-a-new-ssh-key-to-your-github-account

Exegol

(continued from previous page)

ssh-add -K

permanent
will download the private and public resident security keys in the current directory
private key is to be moved in ~/.ssh (physical FIDO2 key will always be needed)
ssh-keygen -K
it's on purpose, the "_rk" part is removed, otherwise it doesn't work.
mv id_ed25519_sk_rk ~/.ssh/id_ed25519_sk
mv id_ed25519_sk_rk.pub ~/.ssh/id_ed25519_sk.pub

Warning: While the ssh-keygen -K command saves names files id_ed25519_sk_rk[.pub], it’s on purpose
the _rk part is then removed on the host. Otherwise, SSH fails at handling the keys. The files must be named
id_ed25519_sk[.pub] on the system.

Once the SSH environment is ready, git CLI can be configured to rely on the security key for signing commits and
authenticating (telling git about your SSH key).

Hint: The git client version must be 2.34 or later.

if setting up for the first time, configure git
git config --global user.name "YOUR_NAME"
for the email, indicate your public email (ID+Name@users.noreply.github.com) from␣
→˓https://github.com/settings/emails
git config --global user.email "ID+Name@users.noreply.github.com"

git config --global gpg.format ssh
replace the public key path if needed, below is an example
git config --global user.signingkey "$HOME/.ssh/id_ed25519_sk.pub"

configure git to sign commits and tags by default
git config --global commit.gpgsign true
git config --global tag.gpgsign true

verify commits locally, associate SSH public keys with users
mkdir -p ~/.config/git
echo "$(git config --get user.email) $(cat ~/.ssh/id_ed25519_sk.pub)" | tee ~/.config/
→˓git/allowed_signers
git config --global gpg.ssh.allowedSignersFile "$HOME/.config/git/allowed_signers"

The SSH connection can then be tested as follows (testing your SSH connection).

load the SSH agent into the current shell
eval "$(ssh-agent -s)"

test the SSH authentication to GitHub servers
ssh -T git@github.com

Hint: The contributor’s GitHub account can be configured to mark unsigned commits as unverified or partially verified.

3.25. Contributors 65

https://docs.github.com/en/authentication/managing-commit-signature-verification/telling-git-about-your-signing-key#telling-git-about-your-ssh-key
https://docs.github.com/en/authentication/connecting-to-github-with-ssh/testing-your-ssh-connection

Exegol

While it’s not mandatory regarding contributions to Exegol since the requirement is managed on Exegol repositories
directly, it’s a nice thing to do. See GitHub’s documentation on Vigilante mode.

3.26 Maintainers

This part of the documentation is meant for Exegol maintainers. It adds up to the contributors documentation.

• Wrapper release

– Preparation

∗ 1. Git updates

∗ 2. Config reviews

– Tests & build

– Post build

– Manual Upload

– Post-Deploy

• Images release

– Prepare changes

– Merge changes

– New tag

– Publish release

• CI/CD Pipeline

– GitHub Actions

∗ 1. Setting up secrets

∗ 2. Deploying a runner

∗ 3. Checking runners status

∗ 4. Understanding the pipelines

∗ 4. Common errors

· 1. docker login

· 2. Disk space

• Pull Requests

66 Chapter 3. Community

https://docs.github.com/en/authentication/managing-commit-signature-verification/displaying-verification-statuses-for-all-of-your-commits

Exegol

3.26.1 Wrapper release

Hint: The wrapper documentation must be aligned with the wrapper features. . The docs PR can be merged once the
wrapper is released.

Preparation

1. Git updates

The first step is to update the project and sub-modules, meaning pointing the exegol-images and exegol-resources sub-
modules to the latest master version. Even if the wrapper is able to auto-update itself, it is always better to keep the
base reference at least up to date.

With git

With Exegol

• Update current wrapper repo:

git pull

• Update git submodules and checkout to main branch for release:

git -C exegol-docker-build checkout main
git -C exegol-docker-build pull
git -C exegol-resources checkout main
git -C exegol-resources pull

Update to the latest version of the main branches (checkout if needed, except for the wrapper which remains in branch
dev)

exegol update -v

Important: Don’t forget to reload and commit any submodule update at this step !

2. Config reviews

• Review exegol.utils.ConstantConfig variables

– Change version number ! (remove the alpha or beta tag at the end of the version number)

• Review documentation

• Review README.md

3.26. Maintainers 67

Exegol

Tests & build

First, test the code with mypy:

mypy exegol.py --ignore-missing-imports --check-untyped-defs

You can execute this one-liner to check the project and build it.

Warning: Require build package installed!

Hint: Exegol can only be published through a source build distribution because of the source code files for building
local images.

python3 setup.py clean test && \
(rm -rf Exegol.egg-info && python3 -m build --sdist) || \
echo "Some tests failed, check your code and requirements before publishing!"

Post build

• Upgrade tests.test_exegol.py version number to the next version build to avoid future mistake

• Commit updates

• Publish PR

• Wait for review and merge

Manual Upload

Important: PyPi packaging and upload is now handle by GitHub action. It will be triggered with the creation of the
new tag in the next-step with the release creation.

This step is no longer needed.

After validation of the PR, we can upload the new version package to pypi.

Warning: Require twine package installed and token configured on ~/.pypirc!

• Check package upload on the test repository (optional)

python3 -m twine upload --repository testpypi dist/* --verbose

• Upload to the production repository

python3 -m twine upload dist/*

68 Chapter 3. Community

https://packaging.python.org/en/latest/tutorials/packaging-projects/#generating-distribution-archives
https://packaging.python.org/en/latest/tutorials/packaging-projects/#uploading-the-distribution-archives

Exegol

Post-Deploy

• Create new github release with new version tag

• Fast-forward dev branch to the latest master commit

• Change the wrapper version on the dev branch to x.y.zb1

3.26.2 Images release

Hint: The images documentation must be aligned with the images features. Make sure to add code to the appropriate
Exegol docs branch and have a pull request ready. The docs PR can be merged once the images are released.

Prepare changes

The first step consists in preparing the dev branch for merge.

1. create a pull request dev -> main named Release X.Y.Z (Release X.Y.ZbI is also accepted, X, Y, Z and I
being numbers. Creating this pull request will trigger the pre-release workflows. The PR comment must indicate
all major changes.

2. edit the dev branch until the pull requests checks (pipeline) all pass, effectively publishing all images to the
preproduction Dockerhub registry

3. once all checks are good, the PR needs to be approved by a maintainer.

Merge changes

Once the PR is approved and ready for merge, it can be merged

1. merge the PR with Create a merge commit

2. Synchronize the dev branch with the latest main update with a fast-forward merge

git checkout main
git pull --all
git checkout dev
git pull --all
git merge --ff-only main
git push

New tag

The X.Y.Z (or X.Y.ZbI) tag then needs to be placed on the same commit the dev and main branches point to.

Optionally, the “Annotated Tag Message” can be set to the PR initial comment with the --file message.txt argu-
ment in the git tag command below.

git tag "X.Y.Z"
git push origin --tags

3.26. Maintainers 69

https://github.com/ThePorgs/Exegol-docs

Exegol

Puhing this tag will trigger the release workflow. Simply put, the workflow will migrate the images from preprod
registry to production registry.

Maintainers needs to make sure workflow goes as planned and images end up in the prod Dockerhub registry. If the
release fails for some reason, the tag can be deleted, changes pushed, and then the tag can be created again to trigger
the release again (git tag -d "X.Y.Z" && git push --delete origin "X.Y.Z").

Publish release

The final step is to create a “release” in github (https://github.com/ThePorgs/Exegol-images/releases/new).

1. The release must point to the tag created before.

2. The release must be named Exegol images X.Y.Z.

3. The release notes can be created with the Generate releases notes button.

4. Set it as latest release.

5. Publish

3.26.3 CI/CD Pipeline

The Exegol project relies on a continuous integration and continuous deployment (CI/CD) pipeline for multiple sce-
narios. At the time of writing, Tue 31 Jan 2023, the pipeline is structured as follows:

wrapper

images

resources

docs

The GitHub Actions platform is used on the Exegol module. Its workflows are used for internal and external pull
requests, new releases and testing on every commit. The workflows build, and push Python packages on the official
PyPI registry, and run tests to make sure everything works as it should.

The GitHub Actions platform is used on the Exegol-images submodule. Its workflows run for internal and external pull
requests, new commits, new tags, and allow to:

• build AMD64 and ARM64 images on self-hosted runners

• run tests to make sure the tools are installed properly

• automatically export tools list to the documentation

• push the images on the official Dockerhub registry

70 Chapter 3. Community

https://github.com/ThePorgs/Exegol-images/releases/new
https://pypi.org/project/Exegol/
https://pypi.org/project/Exegol/
https://hub.docker.com/repository/docker/nwodtuhs/exegol

Exegol

The GitHub Actions platform is used on the Exegol-resources submodule. Its workflows are used to automatically
update the resources (monthly) and automatically export the list of resources to the documentation.

The GitHub Actions platform is used for the documentation you’re reading. Its workflows are used to build on every
commit and pull request to make sure everything works as it should, but also automatically merge changes between the
various branches in order to help with development.

ReadTheDocs then builds the final version on every commit for multiple branches (main, dev, dev-images, dev-wrapper)
and hosts it online at https://exegol.readthedocs.io/.

3.26. Maintainers 71

https://exegol.readthedocs.io/

Exegol

GitHub Actions

The GitHub Actions pipeline(s) need runners to operate the various jobs configured for each workflow. The Exegol
project relies on self-hosted runners instead of the GitHub-hosted runners mainly for costing reasons.

At the time of writing, Tue 31 Jan 2023, the Exegol-images pipeline(s) require ARM64 and AMD64 runners in order
to build, and run corresponding architectured images.

1. Setting up secrets

There are some operations that the runner will operate that will require authentication, including: - pushing Python
packages on PyPI - pushing Docker images on Dockerhub

In order to allow this, GitHub Actions can be set up with secrets that the runner will be able to use later on. This part
of the documentation shows what secrets must be set up and how.

PyPI

Dockerhub

API Tokens can be created in the maintainer account’s PyPI account settings, in the API Tokens part. The scope must
be set to Project: Exegol. The tokens are linked to the personal PyPI account.

Access Tokens can be created in the maintainer account’s Dockerhub security settings. Permissions must be set to
Read, Write, Delete. The tokens are linked to the personal Dockerhub account.

Once the token is created, it can be added as follows:

• For Exegol-images, go to the Exegol-images repo settings > secrets > actions. At the time of writing, 11 Feb.
2023, Dockerhub secrets are named DOCKER_USERNAME and DOCKER_PASSWORD in the workflows.

• For the Python wrapper, go to the Exegol repo settings > secrets > actions. At the time of writing, 11 Feb. 2023,
the PyPI token is named PYPI_API_TOKEN in the workflows.

2. Deploying a runner

The runner can either run on macOS, Linux, or Windows, as those three operating systems are supporting by the GHA
(GitHub Action) platform. x64 and ARM64 are supported for macOS and Windows, and for Linux, ARM is supported
as well.

Below are the hardware requirements for each runner:

• enough RAM (to be defined)

• enough CPU (to be defined)

• enough free disk space (at least ~100GB, bare minimum)

Before deploying a GHA agent on a runner, software requirements must be met:

• Docker (or Docker Desktop for Windows and macOS)

• jq (lightweight and flexible command-line JSON processor)

Linux

macOS

For Linux systems, Docker is required in order to have the GitHub Actions agent running.

Tip: Docker can be installed quickly and easily with the following command-line:

72 Chapter 3. Community

https://pypi.org/manage/account/
https://hub.docker.com/settings/security
https://github.com/ThePorgs/Exegol-images/settings/secrets/actions
https://github.com/ThePorgs/Exegol/settings/secrets/actions

Exegol

curl -fsSL "https://get.docker.com/" -o get-docker.sh
sh get-docker.sh

Warning: To run exegol from the user environment without sudo, the user must have privileged rights equivalent
to root. To grant yourself these rights, you can use the following command

add the sudo group to the user
sudo usermod -aG docker $(id -u -n)

"reload" the user groups
newgrp

The jq utility is also required and can be installed with the following command line:

apt install jq

Once the requirements are met, the agent can be deployed as follows (with sufficient permissions in the GitHub repos-
itory):

• go to https://github.com/ThePorgs/Exegol-images/settings/actions/runners

• click on “New self-hosted runner”

• select Linux as operating system, as well as the right architecture and follow the instructions

• when running the config.sh script, the following settings must be set

– name of the runner group: Default

– name of the runner: up to you

– additional labels: builder,tester (adapt this if the runner is to be used for only one of those actions). If
the runner is an X64/AMD64, the AMD64 tag needs to be set as well. If the runner is ARM64, the right tag
will be set automatically.

– name of work folder: up to you

• start the runner with the run.sh script

• (option) configure the agent as a service if it is to be run unattended/headless with sudo ./svc.
sh install <user>, more info at https://docs.github.com/en/actions/hosting-your-own-runners/
configuring-the-self-hosted-runner-application-as-a-service

Note: When configuring the agent as a service, it will be enabled, meaning it will start at boot. The systemctl
is-enabled command should return enabled.

sudo systemctl is-enabled actions.runner.ThePorgs-Exegol-images.<runner-name>.service

In order to start the service, either reboot the runner, or use systemctl.

sudo systemctl start actions.runner.ThePorgs-Exegol-images.<runner-name>.service

3.26. Maintainers 73

https://github.com/ThePorgs/Exegol-images/settings/actions/runners
https://docs.github.com/en/actions/hosting-your-own-runners/configuring-the-self-hosted-runner-application-as-a-service
https://docs.github.com/en/actions/hosting-your-own-runners/configuring-the-self-hosted-runner-application-as-a-service

Exegol

74 Chapter 3. Community

Exegol

Note: Screenshots annotated with https://annotely.com/

For macOS, Docker Desktop must be installed: https://docs.docker.com/desktop/install/mac-install/.

• In Settings > Resources > Advanced, the virtual disk limit must be set to at least 100GB.

• In Settings > Resources > Advanced, allocate enough CPUs, Memory and Swap.

The jq tool can be installed as follows.

install brew
ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install)
→˓" < /dev/null 2> /dev/null

install jq
brew install jq

Xcode Command Line Tools are also required, and they can be installed with the following command line.

xcode-select --install

Once the requirements are met, the agent can be deployed as follows (with sufficient permissions in the GitHub repos-
itory):

• go to https://github.com/ThePorgs/Exegol-images/settings/actions/runners

3.26. Maintainers 75

https://annotely.com/
https://docs.docker.com/desktop/install/mac-install/
https://github.com/ThePorgs/Exegol-images/settings/actions/runners

Exegol

• click on “New self-hosted runner”

• select macOS as operating system, as well as the right architecture and follow the instructions

• when running the config.sh script, the following settings must be set

– name of the runner group: Default

– name of the runner: up to you

– additional labels: builder,tester (adapt this if the runner is to be used for only one of those actions). If
the runner is an X64/AMD64, the AMD64 tag needs to be set as well. If the runner is ARM64, the right tag
will be set automatically.

– name of work folder: up to you

• start the runner with the run.sh script

• the agent must not be configured as a service with ./svc.sh install. Some errors have been raised when
setting up the pipeline like this.

Note: TODO : how to make that service run at boot unattended without using svc.sh install?

3. Checking runners status

Go to https://github.com/ThePorgs/Exegol-images/settings/actions/runners

4. Understanding the pipelines

TODO explain the pipelines, include diagrams.

4. Common errors

1. docker login

When configuring a macOS agent as a service with ./svc.sh install, the following error was met during workflow
run.

Run docker/login-action@v2
with:

username: ***
password: ***
ecr: auto
logout: true

Logging into Docker Hub...
Error: Error saving credentials: error storing credentials - err: exit status 1, out:␣
→˓`error storing credentials - err: exit status 1, out: `User interaction is not allowed.
→˓``

In order to avoid that error, the runner was started interactively with ./run.sh.

76 Chapter 3. Community

https://github.com/ThePorgs/Exegol-images/settings/actions/runners

Exegol

2. Disk space

When there’s not enough disk space, the following error is usually raised by the pipelines.

You are running out of disk space. The runner will stop working when the machine runs␣
→˓out of disk space. Free space left: 62 MB

3.26.4 Pull Requests

When handling pull requests, maintainers may need to synchronize a contributor’s fork with latests changes. In
command-line, this can be achieved as follows.

git clone "git@github.com:USER/FORK" "dest_dir"
cd dest_dir
git remote add upstream "git@github.com:ThePorgs/REPO"
git fetch upstream
git checkout "TARGET_FORK_BRANCH"
git merge --no-edit upstream/"ORIGIN_BRANCH"
solve conflicts if any
git push

3.27 Sponsors

Dramelac and I work at Capgemini and we thank them for believing in the project since day 1, and for allowing us to
have this personal initiative keep going.

3.27. Sponsors 77

https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/working-with-forks/syncing-a-fork
https://www.capgemini.com/

Exegol

We thank HackTheBox for continuously supporting the community and for helping us financially to acquire the neces-
sary hardware for supporting multiple architectures (AMD64, ARM64). Show some love at https://www.hackthebox.
com/ !

We thank JetBrains for supporting this community project through its OpenSource support program. More information
at https://jb.gg/OpenSourceSupport !

78 Chapter 3. Community

https://www.hackthebox.com/
https://www.hackthebox.com/
https://jb.gg/OpenSourceSupport

	The Exegol project
	Getting started
	Community
	Install Exegol
	Requirements
	Installation
	1. Installation of exegol
	2. Adding Exegol to the PATH
	3. (Optional) Using Exegol auto-completion
	4. Installation of the first Exegol image

	Updates
	Frequently asked questions
	What tools are installed in Exegol?
	Unable to connect to Docker
	Can I contribute to the project?
	Can I run Exegol on a macOS?
	Can I use a VPN with Exegol?
	Can I customize Exegol?
	Can I make my own Exegol image?
	How to install Exegol on an external drive?
	How to add a new tool?
	How do I get X11 to work on a non-Linux host?
	Can I install docker directly on my WSL2 distro instead of Docker Desktop ?

	Tips & tricks
	Change a container’s time
	Share files or notes with targets and collaborators
	Dynamic history commands
	The best reverse shells
	Keyboard shortcuts

	Python Wrapper
	Features
	X11 sharing (GUI)
	Desktop
	Workspace
	Update-fs

	OpenVPN connection
	Shell logging
	Shared network
	Shared timezones
	Exegol-resources
	My-resources
	Volume sharing
	Port sharing
	Env. variables
	Device sharing
	Custom hostname
	Comments
	Capabilities
	Privileged
	Multi-architecture
	Local image building
	Remote image pulling
	Command execution
	Daemon execution
	Temporary containers

	Docker images
	Offline resources
	install action
	Options
	Command examples

	start action
	Options
	Global options
	Virtual desktop
	VPN
	Shell logging
	Session specific

	Command examples

	info action
	Options
	Command examples

	exec action
	Options
	Command examples

	update action
	The update process
	Modules updates
	Images updates

	Options
	Command examples

	stop action
	Options
	Command examples

	restart action
	Options
	Command examples

	remove action
	Options
	Command examples

	uninstall action
	Options
	Command examples

	version action
	Options
	Command examples

	Advanced uses
	Exegol home directory
	Exegol configuration
	My-resources
	Local builds

	Tools list
	My resources
	Custom tools
	Supported setups
	apt (packages, sources, keys)
	bloodhound (customqueries, config)
	firefox (addons, CA)
	python3 (pip3)
	tmux (conf)
	vim (vimrc, configs)
	neovim (.config/nvim)
	zsh (aliases, zshrc, history)

	User setup
	Troubleshooting

	Credentials
	Services list
	Resources
	Resources list

	Users
	Opening issues
	Roadmap
	Discord

	Contributors
	Documentation
	Images
	Adding a new tool
	Function structure
	Install standards
	Other standards
	Multi-architecture builds
	Calling the install function
	Submitting the pull request

	Temporary fixing a tool
	Adding to my-resources

	Wrapper
	Signing commits

	Maintainers
	Wrapper release
	Preparation
	1. Git updates
	2. Config reviews

	Tests & build
	Post build
	Manual Upload
	Post-Deploy

	Images release
	Prepare changes
	Merge changes
	New tag
	Publish release

	CI/CD Pipeline
	GitHub Actions
	1. Setting up secrets
	2. Deploying a runner
	3. Checking runners status
	4. Understanding the pipelines
	4. Common errors
	1. docker login
	2. Disk space

	Pull Requests

	Sponsors

